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ABSTRACT
Given a polynomial 𝑃 (𝑥) of degree 𝑛, namely the polynomial
𝑃 (𝑥) = 𝑐0𝑥𝑛 + 𝑐1𝑥𝑛−1 + 𝑐2𝑥𝑛−2 + · · · + 𝑐𝑛−1𝑥 + 𝑐𝑛 , where the co-
efficients 𝑐 𝑗 , 𝑗 = 0, 1, · · ·𝑛 are real, we want to numerically find a
quadratic factor 𝐾 (𝑥) = 𝑥2 + 𝑎𝑥 + 𝑏 of this polynomial. In order to
find zeroes of 𝑃 (𝑥), we just find a quadratic factor𝐾 (𝑥), and find the
zeroes of 𝐾 (𝑥) using the quadratic formula. Repeatedly factoring
out a quadratic gives all the zeroes of the polynomial 𝑃 (𝑥). Starting
with initial guesses for the coefficients𝑎 and𝑏, say the initial guesses
𝑎0 and 𝑏0, we use long division of 𝑃 (𝑥) by 𝐾0 (𝑥) = 𝑥2 + 𝑎0𝑥 + 𝑏0,
to obtain a quotient 𝑄 (𝑥) = 𝑞0𝑥𝑛−2 + 𝑞1𝑥𝑛−3 + · · · + 𝑞𝑛−2 and re-
mainder 𝑅(𝑥) = 𝑟0𝑥 + 𝑟1. If both 𝑟0 = 0 and 𝑟1 = 0, then 𝐾0 (𝑥) is
a quadratic factor of 𝑃 (𝑥), and we are done. Otherwise we look
for better choices for 𝑎 and 𝑏, using Newton’s method. The new
ideas presented in this paper are (1) the two-loop algorithm in
Section 5 for long division of a degree n polynomial 𝑃 (𝑥) by a
monic quadratic 𝐾 (𝑥), and (2) the recursive algorithm in Section 6
for computing the partial derivatives 𝜕𝑟0/𝜕𝑎, 𝜕𝑟0/𝜕𝑏, 𝜕𝑟1/𝜕𝑎 and
𝜕𝑟1/𝜕𝑏.
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1 LONG DIVISION OF 𝑃 (𝑥) BY 𝐾 (𝑥)
Long division of the polynomial 𝑃 (𝑥) = 𝑐0𝑥𝑛 + 𝑐1𝑥𝑛−1 + 𝑐2𝑥𝑛−2 +
· · ·+𝑐𝑛−1𝑥+𝑐𝑛 by the quadratic𝐾 (𝑥) = 𝑥2+𝑎𝑥+𝑏 can be carried out
using the following long division scheme, shown in Section 2. In this
scheme, the quotient obtained is𝑄 (𝑥) = 𝑞0𝑥𝑛−2+𝑞1𝑥𝑛−3+· · ·+𝑞𝑛−2
and the remainder is 𝑅(𝑥) = 𝑟0𝑥 + 𝑟1, where 𝑟0 = 𝑞𝑛−1 = 𝑐𝑛−1 −
𝑏𝑞𝑛−3−𝑎𝑞𝑛−2 and 𝑟1 = 𝑞𝑛 = 𝑐𝑛−𝑏𝑞𝑛−2. The first row in this scheme
is the divisor 𝐾 (𝑥) = 𝑥2 + 𝑎𝑥 + 𝑏. The second row in this scheme
are the column headers, which are the powers of 𝑥 in decreasing
order from 𝑥𝑛 to 1. The third row are the coefficients 𝑞0, 𝑞1, 𝑞2,
· · · , 𝑞𝑛−2 of the quotient 𝑄 (𝑥), the coefficients only without the
powers of 𝑥 , which are in the column headers. The fourth row are
the coefficients of the dividend polynomial 𝑃 (𝑥), namely 𝑐0, 𝑐1, 𝑐2,
· · · , 𝑐𝑛 .
We obtain the fifth row by multiplying each of the terms of 𝐾 (𝑥) =
𝑥2 + 𝑎𝑥 + 𝑏 by 𝑞0 = 𝑐0, to get the results 𝑞0, 𝑎𝑞0, and 𝑏𝑞0, which
we put on the fifth row under the columns for 𝑥𝑛 , 𝑥𝑛−1, and 𝑥𝑛−2.
Fourth row minus fifth row gives the results 0, 𝑞1 = 𝑐1 − 𝑎𝑞0,
and 𝑐2 − 𝑏𝑞0, which we put in the sixth row. Then we multiply
𝐾 (𝑥) = 𝑥2 + 𝑎𝑥 + 𝑏 by 𝑞1 to get the results 𝑞1, 𝑎𝑞1, and 𝑏𝑞1 which
we put in the seventh row, under the columns for for 𝑥𝑛−1, 𝑥𝑛−2,
and 𝑥𝑛−3. Then we do sixth row minus seventh row and put the
results in the eight row, and so on. This is just the traditional long
division of 𝑃 (𝑥) by 𝐾 (𝑥).

The coefficients of the quotient polynomial obtained by this long
division are, in sequence,

𝑞0 = 𝑐0,

𝑞1 = 𝑐1 − 𝑎𝑞0,
𝑞2 = 𝑐2 − 𝑏𝑞0 − 𝑎𝑞1,

· · · ,
𝑞𝑛−2 = 𝑐𝑛−2 − 𝑏𝑞𝑛−4 − 𝑎𝑞𝑛−3

(1)

and the remainder is 𝑅(𝑥) = 𝑟0𝑥 + 𝑟1, where

𝑟0 = 𝑞𝑛−1 = 𝑐𝑛−1 − 𝑏𝑞𝑛−3 − 𝑎𝑞𝑛−2,
𝑟1 = 𝑞𝑛 = 𝑐𝑛 − 𝑏𝑞𝑛−2 .

(2)

2 LONG DIVISION SCHEMA
Long division of the degree 𝑛 polynomial 𝑃 (𝑥) = 𝑐0𝑥𝑛 + 𝑐1𝑥𝑛−1 +
𝑐2𝑥𝑛−2 + · · · +𝑐𝑛−1𝑥 +𝑐𝑛 by the quadratic factor 𝐾 (𝑥) = 𝑥2 +𝑎𝑥 +𝑏
is shown in Figure 1.

3 NEWTON’S METHOD OF COMPUTING 𝐾 (𝑥)
Starting with initial guesses for the coefficients 𝑎 and 𝑏 of 𝐾 (𝑥), say
the initial guesses𝑎0 and𝑏0, we use long division of 𝑃 (𝑥) by𝐾0 (𝑥) =
𝑥2+𝑎0𝑥+𝑏0, to obtain a quotient𝑄 (𝑥) = 𝑞0𝑥𝑛−2+𝑞1𝑥𝑛−3+· · ·+𝑞𝑛−2
and remainder 𝑅(𝑥) = 𝑟0𝑥 +𝑟1. If both 𝑟0 = 0 and 𝑟1 = 0, then𝐾0 (𝑥)
is a quadratic factor of 𝑃 (𝑥), and we are done. Otherwise we look
for better choices for 𝑎 and 𝑏, using the quadratically converging
Newton’s method. Note that both 𝑟0 and 𝑟1 are functions of 𝑎0 and
𝑏0, namely that 𝑟0 = 𝑓 (𝑎0, 𝑏0) and 𝑟1 = 𝑔(𝑎0, 𝑏0), where 𝑓 () and 𝑔()
are well-defined by the long division of 𝑃 (𝑥) by 𝐾0 (𝑥) in Section 1
and Section 2. Thus better guesses 𝑎1 and 𝑏1 can be obtained by
solving the system of two nonlinear equations 𝑓 (𝑎0, 𝑏0) = 0 and
𝑔(𝑎0, 𝑏0) = 0, by using the Newton’s method.

For notational convenience, when treating as variables we use
𝑎 and 𝑏, but when talking about specific values of 𝑎 and 𝑏, we use
the subscripted versions 𝑎0, 𝑏0, 𝑎1, and 𝑏1. We want the remainder
of long division to be zero. That is, we want to solve the system of
two nonlinear equations, namely

𝑟0 = 𝑓 (𝑎, 𝑏) = 0,
𝑟1 = 𝑔(𝑎, 𝑏) = 0.

Expand both functions 𝑓 () and 𝑔() by Taylor series around the
initial guess (𝑎0, 𝑏0) to get the infinite series expansions, namely

𝑓 (𝑎, 𝑏) = 𝑓 (𝑎0, 𝑏0) + 𝑓𝑎 (𝑎0, 𝑏0) (𝑎 − 𝑎0) + 𝑓𝑏 (𝑎0, 𝑏0) (𝑏 − 𝑏0) + · · ·
𝑔(𝑎, 𝑏) = 𝑔(𝑎0, 𝑏0) + 𝑔𝑎 (𝑎0, 𝑏0) (𝑎 − 𝑎0) + 𝑔𝑏 (𝑎0, 𝑏0) (𝑏 − 𝑏0) + · · ·
Here 𝑓𝑎 () = 𝜕𝑓 ()/𝜕𝑎, 𝑓𝑏 = 𝜕𝑓 ()/𝜕𝑏, 𝑔𝑎 () = 𝜕𝑔()/𝜕𝑎, and 𝑔𝑏 () =

𝜕𝑔()/𝜕𝑏. Using only the first three terms of each series as shown,
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𝑥2 + 𝑎𝑥 + 𝑏
xn xn−1 xn−2 xn−3 xn−4 · · · x 1

𝑞0 𝑞1 𝑞2 · · · 𝑞𝑛−3 𝑞𝑛−2
𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 · · · 𝑐𝑛−1 𝑐𝑛
𝑞0 = 𝑐0 𝑎𝑞0 𝑏𝑞0
0 𝑞1 = 𝑐1 − 𝑎𝑞0 𝑐2 − 𝑏𝑞0

𝑞1 𝑎𝑞1 𝑏𝑞1
0 𝑞2 = 𝑐2 − 𝑏𝑞0 − 𝑎𝑞1 𝑐3 − 𝑏𝑞1

𝑞2 𝑎𝑞2 𝑏𝑞2
0 𝑞3 = 𝑐3 − 𝑏𝑞1 − 𝑎𝑞2 𝑐4 − 𝑏𝑞2

𝑞3 𝑎𝑞3 · · ·
0 𝑞4 = 𝑐4 − 𝑏𝑞2 − 𝑎𝑞3 · · ·

· · ·
· · · 𝑞𝑛−1 = 𝑐𝑛−1 − 𝑏𝑞𝑛−3 − 𝑎𝑞𝑛−2 𝑞𝑛 = 𝑐𝑛 − 𝑏𝑞𝑛−2

Figure 1: Long division of the degree 𝒏 polynomial 𝑷 (𝒙) = 𝒄0𝒙𝒏 + 𝒄1𝒙𝒏−1 + 𝒄2𝒙𝒏−2 + · · · + 𝒄𝒏−1𝒙 + 𝒄𝒏 by the quadratic factor
𝑲 (𝒙) = 𝒙2 + 𝒂𝒙 + 𝒃

by dropping the second and higher degree terms in (𝑎 − 𝑎0) and
(𝑏 − 𝑏0), and equating them to zero, we get[
𝑓 (𝑎0, 𝑏0)
𝑔(𝑎0, 𝑏0)

]
+
[
𝑓𝑎 (𝑎0, 𝑏0) 𝑓𝑏 (𝑎0, 𝑏0)
𝑔𝑎 (𝑎0, 𝑏0) 𝑔𝑏 (𝑎0, 𝑏0)

]
·
[
𝑎 − 𝑎0
𝑏 − 𝑏0

]
=

[
0
0

]
By transposing the first matrix to the right hand side of the

equation, then multiplying both sides of the equation by the inverse
of the square matrix, we get the resulting equation[

𝑎 − 𝑎0
𝑏 − 𝑏0

]
= −

[
𝑓𝑎 (𝑎0, 𝑏0) 𝑓𝑏 (𝑎0, 𝑏0)
𝑔𝑎 (𝑎0, 𝑏0) 𝑔𝑏 (𝑎0, 𝑏0)

]−1
·
[
𝑓 (𝑎0, 𝑏0)
𝑔(𝑎0, 𝑏0)

]
Carrying out the indicated matrix operations, and simplifying,

we get our desired solution for (𝑎, 𝑏), namely

𝑎 = 𝑎0 −
𝑓 (𝑎0, 𝑏0)𝑔𝑏 (𝑎0, 𝑏0) − 𝑔(𝑎0, 𝑏0) 𝑓𝑏 (𝑎0, 𝑏0)

𝐷

𝑏 = 𝑏0 −
𝑔(𝑎0, 𝑏0) 𝑓𝑎 (𝑎0, 𝑏0) − 𝑓 (𝑎0, 𝑏0)𝑔𝑎 (𝑎0, 𝑏0)

𝐷

𝐷 = 𝑓𝑎 (𝑎0, 𝑏0)𝑔𝑏 (𝑎0, 𝑏0) − 𝑔𝑎 (𝑎0, 𝑏0) 𝑓𝑏 (𝑎0, 𝑏0)

(3)

If the determinant𝐷 is nonzero, we are able to compute solutions
for new values of 𝑎 and 𝑏, using the above equations.

4 NEWTON’S METHOD
We summarize the Newton’s method for computing a monic qua-
dratic factor 𝐾 (𝑥) of polynomial 𝑃 (𝑥) as follows.

(1) We start with some initial guesses for the values of 𝑎 and 𝑏,
say our initial guesses are 𝑎0 = 1 and 𝑏0 = 2.

(2) Then we do long division of polynomial 𝑃 (𝑥) by the qua-
dratic 𝐾0 (𝑥) = 𝑥2 + 𝑎0𝑥 + 𝑏0, to get the quotient coefficients
𝑞0, 𝑞1, 𝑞2, · · · , 𝑞𝑛−2, and the remainder coefficients 𝑟0 and
𝑟1.

(3) If 𝑟0 = 0 and 𝑟1 = 0, then 𝐾0 (𝑥) is a quadratic factor of 𝑃 (𝑥)
and we stop computation.

(4) Otherwise, if either 𝑟0 or 𝑟1 is nonzero, we compute “better”
values of 𝑎 and 𝑏, using the Newton’s formulas in Equation 3
in Section 3 above to obtain new values 𝑎1 and 𝑏1. Then we
replace 𝑎0 and 𝑏0 by 𝑎1 and 𝑏1, and repeat the computation
from Step 2.

The Newton’s method is known to converge to the actual 𝑎 and
𝑏 values quadratically. That is, if the error of the current guess

is 𝜖 = max{|𝑎 − 𝑎0 |, |𝑏 − 𝑏0 |}, then the error of the next guess is
approximately 𝜖2. We shall observe this quadratic convergence in
the examples that will be given in Section 9.

5 COMPUTER CODE FOR DIVISION OF 𝑃 (𝑥)
BY 𝐾0(𝑥)

The following is a C program fragment for doing long division of
the degree 𝑛 polynomial 𝑃 (𝑥) by the monic quadratic 𝐾0 (𝑥), that
is explained in Section 1.
The inputs to the program are: (1) the coefficients 𝑐0, 𝑐1, 𝑐2, · · · ,
𝑐𝑛 of the dividend polynomial 𝑃 (𝑥), and (2) the coefficients 𝑎0 and
𝑏0 of the divisor polynomial 𝐾0 (𝑥). (3) DEG is the degree 𝑛 of the
polynomial 𝑃 (𝑥).
The outputs of the program are (1) the coefficients 𝑞0, 𝑞1, 𝑞2, · · · ,
𝑞𝑛−2 of the quotient 𝑄 (𝑥), and (2) the coefficients 𝑟0 = 𝑞𝑛−1 and
𝑟1 = 𝑞𝑛 of the remainder 𝑅(𝑥).
for(j = 0; j <= DEG; j++) q[j] = c[j];
for(j = 1; j < DEG; j++) {

q[j] = q[j] - (q[j-1] * a0);
q[j+1] = q[j+1] - (q[j-1] * b0);

}

In the first loop, we copy the coefficients c[j] to q[j] for 𝑗 from
0 to 𝑛. Here we copy c[0] to q[0].
In the second loop, we compute the quotient coefficients q[j] for 𝑗
from 1 to 𝑛 − 2 and remainder coefficients q[j] for 𝑗 from 𝑛 − 1 to
𝑛. In this second loop, we actually compute q[1]=c[1]-a0*q[0].
We then compute q[j]=c[j] -b0*q[j-2] -a0*q[j-1] for 𝑗 from
2 to 𝑛 − 1. Finally we compute q[n]=c[n] -b0*q[n-2].

6 COMPUTING 𝑓 () AND 𝑔() AND
DERIVATIVES

Consider the remainder 𝑅(𝑥) = 𝑟0𝑥 + 𝑟1 obtained when we do long
division of 𝑃 (𝑥) by the quadratic divisor 𝐾 (𝑥). The coefficient 𝑟0 is
a function of 𝑎 and 𝑏, since 𝑟0 = 𝑞𝑘 = 𝑐𝑘 − 𝑏𝑞𝑘−2 − 𝑎𝑞𝑘−1, where
𝑘 = 𝑛 − 1. Thus we can rewrite 𝑟0 as 𝑞𝑘 (𝑎, 𝑏) = 𝑓 (𝑘, 𝑎, 𝑏), where
𝑘 = 𝑛 − 1. Similarly the coefficient 𝑟1 is a function of 𝑎 and 𝑏, since
𝑟1 = 𝑞𝑘 = 𝑐𝑘 − 𝑏𝑞𝑘−2 where 𝑘 = 𝑛. Thus we can rewrite 𝑟1 as
𝑞𝑘 (𝑎, 𝑏) = 𝑔(𝑘, 𝑎, 𝑏), where 𝑘 = 𝑛.
Let us define a new function 𝐹 (𝑘, 𝑎, 𝑏) = 𝑞𝑘 , 𝑘 = 0, 1, 2, · · · , 𝑛. Thus
our functions 𝑓 () and 𝑔() and be defined as follows 𝑓 (𝑎, 𝑏) =
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𝐹 (𝑛 − 1, 𝑎, 𝑏) and 𝑔(𝑎, 𝑏) = 𝐹 (𝑛, 𝑎, 𝑏). From the computation in
Equation 1 and Equation 2 (in Section 1) of the coefficients 𝑞𝑘 , with
𝑘 = 0, 1, 2, · · · , 𝑛, we can define 𝐹 (𝑘, 𝑎, 𝑏) casewise as follows.

𝐹 (𝑘, 𝑎, 𝑏) =


𝑐0 𝑘 = 0
𝑐1 − 𝑐0𝑎 𝑘 = 1
𝑐𝑘 − 𝑎𝐹 (𝑘 − 1, 𝑎, 𝑏) − 𝑏𝐹 (𝑘 − 2, 𝑎, 𝑏) 𝑘 = 2, 3, · · · , 𝑛 − 1
𝑐𝑘 − 𝑏𝐹 (𝑘 − 2, 𝑎, 𝑏) 𝑘 = 𝑛

We can compute the partial derivatives 𝐹𝑎 () and 𝐹𝑏 () by differ-
entiating the above definitions. The partial derivative 𝐹𝑎 () and its
C program implementation long double dFa() are

𝐹𝑎 (𝑘, 𝑎, 𝑏) =



0 𝑘 = 0
−𝑐0 𝑘 = 1
−𝑎𝐹𝑎 (𝑘 − 1, 𝑎, 𝑏) − 𝐹 (𝑘 − 1, 𝑎, 𝑏)

−𝑏𝐹𝑎 (𝑘 − 2, 𝑎, 𝑏) 𝑘 = 2, 3, · · · , 𝑛 − 1
−𝑏𝐹𝑎 (𝑘 − 2, 𝑎, 𝑏) 𝑘 = 𝑛

long double dFa(int k)
{

if(k == 0) return 0.0;
if(k == 1) return -q[0];
if(k>=2 && k<DEG) return -a0*dFa(k-1)-q[k-1]-b0*dFa(k-2);
if(k == DEG) return -b0*dFa(k-2);

}

The partial derivative 𝐹𝑏 () and its C program implementation
long double dFb() are

𝐹𝑏 (𝑘, 𝑎, 𝑏) =


0 𝑘 = 0, 1
−𝑎𝐹𝑏 (𝑘 − 1, 𝑎, 𝑏) − 𝑏𝐹𝑏 (𝑘 − 2, 𝑎, 𝑏)

−𝐹 (𝑘 − 2, 𝑎, 𝑏) 𝑘 = 2, 3, · · · , 𝑛 − 1
−𝑏𝐹𝑏 (𝑘 − 2, 𝑎, 𝑏) − 𝐹 (𝑘 − 2, 𝑎, 𝑏) 𝑘 = 𝑛

long double dFb(int k)
{

if(k == 0 || k == 1) return 0.0;
if(k>=2 && k<DEG) return -a0*dFb(k-1)-b0*dFb(k-2)-q[k-2];
if(k == DEG) return -b0*dFb(k-2)-q[k-2];

}

The four partial derivatives 𝑓𝑎 (), 𝑓𝑏 (), 𝑔𝑎 (), 𝑔𝑏 () that we need
to solve Equation 3 are therefor:

𝑓𝑎 (𝑎, 𝑏) = 𝐹𝑎 (𝑛 − 1, 𝑎, 𝑏)
𝑓𝑏 (𝑎, 𝑏) = 𝐹𝑏 (𝑛 − 1, 𝑎, 𝑏)
𝑔𝑎 (𝑎, 𝑏) = 𝐹𝑎 (𝑛, 𝑎, 𝑏)
𝑔𝑏 (𝑎, 𝑏) = 𝐹𝑏 (𝑛, 𝑎, 𝑏)

7 IMPLEMENTATION OF NEWTON’S METHOD
Given the values of the coefficients 𝑐0, 𝑐1, 𝑐2, · · · , 𝑐𝑛 of the dividend
polynomial 𝑃 (𝑥), and the initial guesses 𝑎0 and𝑏0 of the coefficients
of the divisor polynomial 𝐾0 (𝑥), the following C code fragment
carries out Newton’s method iteratively, at most NTRIES number of
times, or until {𝑎0 ≠ 0 and | (𝑎1 − 𝑎0)/𝑎0 | < 𝜖 and 𝑏0 ≠ 0 and | (𝑏1 −
𝑏0)/𝑏0 | < 𝜖}, whichever comes first. The long division algorithm

is the one discussed in Section 5, and the partial derivatives are
recursively computed using the code in Section 6.
for(i = 1; i <= NTRIES; i++) {

// Long division algorithm
for(j = 0; j <= DEG; j++) q[j] = c[j];
for(j = 1; j < DEG; j++) {

q[j] = q[j] - (q[j-1] * a0);
q[j+1] = q[j+1] - (q[j-1] * b0);

}
// Remainder coefficients r[0] and r[1]
ff = q[DEG-1];
gg = q[DEG];
if(ff == 0.0 && gg == 0.0) break;
// The four partial derivatives
fa = dFa(DEG-1);
fb = dFb(DEG-1);
ga = dFa(DEG);
gb = dFb(DEG);
// Computing the determinant
dt = fa * gb - ga * fb;
if(ABS(dt) < ZERO) exit(1);
da = (ff * gb - gg * fb) / dt;
db = (gg * fa - ff * ga) / dt;
// Computing new values a1 and b1
a1 = a0 - da;
b1 = b0 - db;
if(a0 != 0.0 && ABS(da/a0) < EPS &&

b0 != 0.0 && ABS(db/b0) < EPS) break;
a0 = a1;
b0 = b1;

}

The source code of the complete C program qfactor.c is avail-
able by writing email to the author. The program contains input and
output so that it is a stand-alone program. It looks for one quadratic
factor, given initial values of 𝑎 and 𝑏, and after the quadratic factor
is found, computes the two roots of the quadratic.

8 USING QFACTOR.C PROGRAM
The program requires that the user enter the (𝑛+1) real coefficients
of the degree 𝑛 polynomial 𝑃 (𝑥) = 𝑐0𝑥𝑛 + 𝑐1𝑥𝑛−1 + 𝑐2𝑥𝑛−2 + · · · +
𝑐𝑛−1𝑥 + 𝑐𝑛 , and then enter the initial guess for the two coefficients
𝑎0 and 𝑏0 of the quadratic factor 𝐾 (𝑥) = 𝑥2 +𝑎0𝑥 +𝑏0. These values
can be entered using any of these formats: (1) integer like 23, -
57, or 0, (2) decimal number like -10.75, 0.0, or 52.5, (3) scientific
notation like -2.234e14 meaning −2.234 ·1014, or 76.34e-12, meaning
76.34 · 10−12, or (4) any mix of these formats.

Upon completing the entry of the coefficients of the polynomial
and the initial guess of the coefficients of the quadratic factor, the
program computes better and better guesses for the values of 𝑎 and
𝑏, until the values are correct to a predetermined accuracy (EPS,𝜖),
or until the maximum number of iterations (NTRIES) of Newton’s
method is reached, whichever comes first. Then the program stops
and prints (1) the degree (𝑛 − 2) quotient polynomial 𝑄 (𝑥), (2) the
quadratic factor 𝐾 (𝑥) that the Newton’s method found, and (3) the
two roots of this quadratic factor. At this point, the user can do one
of three procedures.
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Procedure 1. The user can stop.
Procedure 2. The user can enter a new set of starting values 𝑎0 and
𝑏0 in order to possibly find a new quadratic factor of the original
degree 𝑛 polynomial
Procedure 3. The user can stop the current program run, then run
the program again, but using as input the degree 𝑛 − 2 polynomial
printed out by the previous run, using copy-paste from the previ-
ous run to the new program run, so that there is no retyping of
coefficient values. Then we can continue this “collapsing” of degree
of the polynomial until we get all the roots.

9 SOLVED EXAMPLES
For the examples given here, we sometimes have to break a single
long line of computer output (printout) into two or more lines, so
that the entire line can be seen on the page. Other than that, we
made no modifications in the computer output.

9.1 Example from Rafiq [8]
Find a quadratic factor of the following degree four polynomial,
which is Example 3 in Rafiq [8]: 𝑃 (𝑥) = 1.9520 · 10−14𝑥4 − 9.5838 ·
10−11𝑥3 + 9.7215 · 10−8𝑥2 + 1.671 · 10−4𝑥 − 0.20597. When we
start with 𝑎0 = 100 and 𝑏0 = −100, we get the quadratic factor
𝑥2 + 163.940632𝑥 − 1452496.708774, with roots 1126.009751 and
−1289.950382, which are the same real roots found by Rafiq [8].
Enter degree of polynomial [>2]: 4
Enter 5 coeffs decr order: 1.952e-14 -9.5838e-11
9.7215e-08 0.0001671 -0.20597
Deg 4 poly entered: 1.952e-14 -9.5838e-11 9.7215e-08
0.0001671 -0.20597
Enter a b [0 0 to end]: 100 -100
Quad coeffs:
Iter 0: 100.0000000000000000 -100.0000000000000000
Iter 1: -204.3860830346749444 -1925019.3555461554128669
Iter 2: 411.0866081826201767 -1134217.9762273866740543
Iter 3: 210.0010925603964294 -1393117.1294690310264741
Iter 4: 165.9440620727080588 -1449912.9227901836666206
Iter 5: 163.9446382221588250 -1452491.5408436994840713
Iter 6: 163.9406316534402896 -1452496.7087531190807113
Iter 7: 163.9406316373749578 -1452496.7087738420658525
Iter 8: 163.9406316373749578 -1452496.7087738420659662
Deg 2 Quotient: 0.000000 -0.000000 0.000000
Quadratic factor: x^2 +163.940632x -1452496.708774
Roots are:1126.009751 and -1289.950382

When we start with 𝑎0 = −5000 and 𝑏0 = 6000000, we get the
quadratic factor 𝑥2 − 5073.674238𝑥 + 7264554.707450, with complex
roots 2536.837119 + 910.501037i and 2536.837119 − 910.501037i,
which are the same complex roots found by Rafiq [8].
Enter a b [0 0 to end]: -5000 6000000
Quad coeffs:
Iter 0: -5000.0000000000000000 6000000.0000000000000000
Iter 1: -4925.3135204350711991 6739960.3174731292501747
Iter 2: -5099.3963153108729891 7334285.4845929701623390
Iter 3: -5074.1386846732093225 7265539.2090234159468309
Iter 4: -5073.6743357811892570 7264554.7901784460523231
Iter 5: -5073.6742381947481726 7264554.7074500004719084
Iter 6: -5073.6742381947520069 7264554.7074500292092125

Deg 2 Quotient: 0.000000 0.000000 -0.000000
Quadratic factor: x^2 -5073.674238x +7264554.707450
Roots are:2536.837119+910.501037i and
2536.837119-910.501037i

9.2 Laguerre polynomials [12]
Find a quadratic factor of the fifth degree Laguerre polynomial
𝐿5 (𝑥) = (−𝑥5 + 25𝑥4 − 200𝑥3 + 600𝑥2 − 600𝑥 + 120)/120. For pur-
poses of finding quadratic factors, we can drop the factor 1/120
and multiply by −1 to get the simpler polynomial −120 · 𝐿5 (𝑥) =
𝑥5 − 25𝑥4 + 200𝑥3 − 600𝑥2 + 600𝑥 − 120. If we start with 𝑎0 = −1
and 𝑏0 = 1, the roots found are 1.413403 and 0.263560, which are
the same roots given by Salzer [11].
Enter degree of polynomial [>2]: 5
Enter 6 coeffs decr order: 1 -25 200 -600 600 -120
Deg 5 poly entered: 1 -25 200 -600 600 -120
Enter a b [0 0 to end]: -1 1
Quad coeffs:
Iter 0: -1.0000000000000000 1.0000000000000000
Iter 1: -1.4742143692395518 0.4460485972359056
Iter 2: -1.6512809504470201 0.3744097884444698
Iter 3: -1.6764817698291903 0.3724802596240043
Iter 4: -1.6769632072206185 0.3725169354173948
Iter 5: -1.6769633788246361 0.3725169621487077
Iter 6: -1.6769633788246577 0.3725169621487120
Deg 3 Quotient: 1.000000 -23.323037 160.515605
-322.132982
Quadratic factor: x^2 -1.676963x +0.372517
Roots are: 1.413403 and 0.263560

If we run the qfactor program again, giving the degree three quo-
tient above as input, namely the polynomial 1.000000𝑥3−23.323037𝑥2+
160.515605𝑥 − 322.132982, and if we start with 𝑎0 = −1 and 𝑏0 = 1,
the roots found are 7.085809 and 3.596426, which are the same roots
given by Salzer [11]. The remaining degree one quotient, namely
1.000000𝑥 − 12.640802, has root 12.640802.
Enter degree of polynomial [>2]: 3
Enter 4 coeffs decr order: 1.000000 -23.323037
160.515605 -322.132982
Deg 3 poly entered: 1 -23.323 160.516 -322.133
Enter a b [0 0 to end]: -1 1
Quad coeffs:
Iter 0: -1.0000000000000000 1.0000000000000000
Iter 1: -6.7919792691737646 14.6899797401748590
Iter 2: -9.4972166412802723 21.8904845703736939
Iter 3: -10.4967954382757727 24.8820133132670366
Iter 4: -10.6762176607512623 25.4632166840639728
Iter 5: -10.6822283676961523 25.4835643087874602
Iter 6: -10.6822350233573271 25.4835874017388127
Iter 7: -10.6822350233654133 25.4835874017672732
Iter 8: -10.6822350233654132 25.4835874017672732
Deg 1 Quotient: 1.000000 -12.640802
Quadratic factor: x^2 -10.682235x +25.483587
Roots are: 7.085809 and 3.596426

To summarize, the five roots of the Laguerre polynomial 𝐿5 (𝑥)
are 0.263560, 1.413403, 3.596426, 7.085809, and 12.640802, which
are the five roots given by Salzer [11].
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9.3 Legendre polynomials [13]
Find a quadratic factor of the eight degree Legendre polynomial
𝑃8 (𝑥) = (6435𝑥8 − 12012𝑥6 + 6930𝑥4 − 1260𝑥2 + 35)/128. This
polynomial is symmetric since 𝑃8 (−𝑥) = 𝑃8 (𝑥), and so we only
need to find the positive roots. For purposes of finding quadratic
factors, we can drop the factor 1/128. If we start with 𝑎0 = −1 and
𝑏0 = 1, the roots found are 0.525532 and 0.183435, which are the
same roots given by Lowan [5].
Enter degree of polynomial [>2]: 8
Enter 9 coeffs decr order: 6435 0 -12012 0 6930 0
-1260 0 35
Deg 8 poly entered: 6435 0 -12012 0 6930 0 -1260 0 35
Enter a b [0 0 to end]: -1 1
Quad coeffs:
Iter 0: -1.0000000000000000 1.0000000000000000
Iter 1: -0.9165466406754666 0.6862151332071878
Iter 2: -0.8481340483475369 0.4592487346715779
Iter 3: -0.7940460635972765 0.2991915280826729
Iter 4: -0.7537103360782697 0.1922807479153829
Iter 5: -0.7267567446934254 0.1292608837302444
Iter 6: -0.7128130963480143 0.1020724784389720
Iter 7: -0.7091617860047420 0.0966138318667571
Iter 8: -0.7089674431118241 0.0964011661958203
Iter 9: -0.7089670524130436 0.0964008497335634
Iter 10: -0.7089670524119788 0.0964008497328791
Iter 11: -0.7089670524119788 0.0964008497328791
Deg 6 Quotient: 6435.000000 4562.202982 -9397.887867
-7102.593104 2800.459878 2670.129796 363.067339
Quadratic factor: x^2 -0.708967x +0.096401
Roots are:0.525532 and 0.183435

If we start with 𝑎0 = −1 and 𝑏0 = 0, the roots found are 0.960290
and 0.796666, which are the same roots given by Lowan [5].
Enter a b [0 0 to end]: -1 0
Quad coeffs:
Iter 0: -1.0000000000000000 0.0000000000000000
Iter 1: -1.3479941413924910 0.3763440860215054
Iter 2: -1.9508272202635273 0.9464537929883982
Iter 3: -1.8603954658225640 0.8624518647859902
Iter 4: -1.7996517864098767 0.8055078706089895
Iter 5: -1.7674303038954489 0.7750142253360990
Iter 6: -1.7577791385829587 0.7658177616274100
Iter 7: -1.7569619157828724 0.7650360866802702
Iter 8: -1.7569563341699185 0.7650307375201544
Iter 9: -1.7569563339111630 0.7650307372719293
Iter 10: -1.7569563339111630 0.7650307372719293
Deg 6 Quotient: 6435.000000 11306.014009 2929.200130
-3502.971512 -1465.496120 105.068188 45.749796
Quadratic factor: x^2 -1.756956x +0.765031
Roots are:0.960290 and 0.796666

By symmetry of the Legendre polynomial, the eight roots are
therefore ±0.183435, ±0.525532, ±0.796666, and ±0.960290.

9.4 Constant B3 of Bifurcation Theory [6]
“B3 is the third bifurcation point of the logistic map 𝑥𝑘+1 = 𝑟𝑥𝑘 (1−
𝑥𝑘 ), which exhibits period doubling shortly before the onset of

chaos. Computations using a predecessor algorithm to PSLQ found
that B3 is a root of the polynomial, 0 = 4913 + 2108𝑡2 − 604𝑡3 −
977𝑡4 + 8𝑡5 + 44𝑡6 + 392𝑡7 − 193𝑡8 − 40𝑡9 + 48𝑡10 − 12𝑡11 + 𝑡12”. if
we start with 𝑎0 = −1 and 𝑏0 = 1, the roots found are 3.960769 and
3.544090, and 3.544090 is the same root given in MathOverflow [6].
Enter degree of polynomial [>2]: 12
Enter 13 coeffs decr order: 1 -12 48 -40 -193 392 44
8 -977 -604 2108 0 4913
Deg 12 poly entered: 1 -12 48 -40 -193 392 44 8 -977
-604 2108 0 4913
Enter a b [0 0 to end]: -1 1
Quad coeffs:
Iter 0: -1.0000000000000000 1.0000000000000000
Iter 1: 0.9604192460035566 -0.7738861558109435
Iter 2: -6.0041965546515304 -11.2421615740261158
Iter 3: -5.4731756863249682 -10.4464404566472117
Iter 4: -4.9946061671995209 -9.7292755261615639
Iter 5: -4.5643126702724995 -9.0843440289446050
Iter 6: -4.1786778608638634 -8.5060436004679316
Iter 7: -3.8347000133191092 -7.9893710690607148
Iter 8: -3.5301517678797782 -7.5295554740640297
Iter 9: -3.2640087644562776 -7.1207867148359447
...
Iter 41: -7.5048590119585681 14.0373219974098523
Deg 10 Quotient: 1.000000 -4.495141 0.227279 24.805436
-10.029086 -31.468765 -51.387132 64.084002 225.279118
187.120245 349.995533
Quadratic Factor: x^2 -7.504859x +14.037322
Roots are: 3.960769 and 3.544090

10 PROGRAM LIMITATIONS
The C program presented here uses the data type long double
for all floating point computations. The number of decimal digits
of precision of long double depends on the hardware and the
C compiler used. In this paper, we used an Intel x86_64 and gcc-
11.4.0, which provide 17-18 digits of precision. For problems where
coefficients of the polynomial exceed 18 digits, the C program given
here is not the right tool. Instead, the algorithms given here should
be implemented using the GNU MultiPrecision (GMP) library.

11 CONCLUSION
This paper derives the mathematical formulas for numerically com-
puting a quadratic factor𝐾 (𝑥) = 𝑥2+𝑎𝑥+𝑏 of a degree𝑛 polynomial
𝑃 (𝑥) = 𝑐0𝑥𝑛 + 𝑐1𝑥𝑛−1 + 𝑐2𝑥𝑛−2 + · · · + 𝑐𝑛−1𝑥 + 𝑐𝑛 using New-
ton"s Method. It also provides a C program implementation of this
method. The author believes that the C program implementation of
the computation of the quotient𝑄 (𝑥) = 𝑞0𝑥𝑛−2+𝑞1𝑥𝑛−3+· · ·+𝑞𝑛−2
and the remainder is 𝑅(𝑥) = 𝑟0𝑥 + 𝑟1 is new, although the Division
Algorithm is quite old and well known, the particular C program
implementation in this paper is new. In particular, the C program
implementation of the recursive evaluation of the partial derivatives
𝜕𝑟0/𝜕𝑎, 𝜕𝑟0/𝜕𝑏, 𝜕𝑟1/𝜕𝑎 and 𝜕𝑟1/𝜕𝑏 is new.
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