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ABSTRACT 

This paper explores the offline version of the Food Delivery 

Problem (oFDP) on starlike graphs. In oFDP, customer requests are 

sent to the central hub/restaurant (depot) which has a single server 

that has to decide where and when to deliver customer requests 

(orders). The server is required to return to the depot to pick up new 

orders before serving requests. The objective is to minimize the 

maximum flow time, i.e., the maximum time between the 

submission and completion of a request. Thus, this problem 

attempts to reduce the longest waiting time that a single customer 

may experience. The researchers study the oFDP on star-like 

graphs to develop several heuristics and compare their performance 

using generated experimental data. Four heuristics—FIFO, MRT, 

SAT, and OAT—were evaluated and benchmarked. OAT 

consistently performed well across different scenarios while SAT 

showed higher average approximation ratios, especially on certain 

graph types. FIFO and MRT exhibited acceptable performance but 

were sensitive to graph density. OAT emerged as a strong 

contender, balancing competitiveness and efficiency. Additionally, 

two properties were established: one highlighting the efficiency 

gain from batch delivery options, and the other emphasizing the 

strategic advantage of allowing waiting. 
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1  INTRODUCTION 

In the past decade, the landscape of purchasing and consuming 

foods has witnessed a substantial transformation [5], propelled by 

the rapid growth of online food ordering platforms. This trend 

experienced an unprecedented acceleration, with the recent global 

pandemic exerting a profound influence on the relevance of these 

services. The pandemic catalyzed a shift in lifestyles, prompting 

individuals to embrace remote work and confinement to their 

homes, thereby elevating the appeal of convenient online food 

delivery[6]. In consequence, traditional avenues for purchasing 

meals have faced limitations within this evolving context[1]. This 

transformative shift has ushered in a paradigm where online food 

delivery has become a common choice, garnering favor among both 

consumers and businesses alike[6]. 

Nonetheless, this surge in demand for online food delivery services 

comes hand in hand with the potential challenge of optimizing 

delivery operations. The imminent risk of service overload 

necessitates a proactive approach to ensure seamless customer 

experiences. In this context, the need to manage delivery orders 

efficiently and mitigate potential delays assumes of  utmost 

importance. Among the array of factors that collectively influence 

service quality of online food delivery, the duration elapsed 

between order placement and food delivery – commonly known as 

flow time – emerges as a critical dimension. This temporal aspect 

holds the potential to substantially shape the overall customer 

satisfaction for online food delivery. To further explore the 

complexities of optimizing delivery operations in the context of 

offline food delivery, this research aims to address the following 

questions: 1. What heuristics are applicable as solutions to the 

offline food delivery problem and how do they compare to one 

another in terms of efficiency, approximation ratio, robustness, and 

minimal traversal distance? 2. What properties can be derived from 

this problem, and how do they contribute to the performance of the 

algorithms? 

In this study, we evaluate four heuristics in offline food delivery, 

comparing their efficiency and robustness. Additionally, we 

identify two key properties that contribute to their performance: the 

efficiency gain from batch delivery and the strategic advantage of 

allowing waiting. These findings advance understanding and 

optimization strategies in food delivery operations. 

 

2 REVIEW OF RELATED WORK 

In contrast to flow time scheduling problems that have primarily 

focused on preemptive solutions, the Food Delivery Problem 

presents a distinct scenario where preemption lacks practicality due 

to the preference for deploying additional servers over preempting 

those already in transit. This underscores the significance of the 

Food Delivery Problem (FDP) as an intriguing research area, driven 

not only by its real-world applicability, but also by its rarity as a 

flow time routing problem with the potential for non-trivial 

competitive algorithms[20]. 
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The offline version of the food delivery problem (oFDP) shares 

close ties with numerous vehicle routing problems. For instance, 

the uncapacitated version (where c = ∞) with a single vehicle (k = 

1) FDP, where all requests emerge at time 0, encompasses a 

variation of the path problem for the traveling salesman. In cases 

where the vehicle's capacity is finite (c ≠ ∞), the previously 

mentioned FDP transforms into the Capacitated Vehicle Routing 

Problem (CVRP). A broader context is explored through the Dial-

a-Ride Problem (DaRP), where not only the delivery destination 

but also individual pickup points can be specified by each 

customer. The vehicle is tasked with transporting the customer 

from their pickup location to their designated delivery spot. While 

much of the research on offline CVRP/DaRP has concentrated on 

the objective of minimizing total travel distance, these variations 

involve intricate problem nuances[21]. 

While the offline and online versions of the food delivery problem 

are closely linked, they have a clear distinction rooted in temporal 

dynamics. In the offline context, fixed parameters are known ahead, 

while the online scenario deals with incremental delivery requests 

over time. When deciding to start a delivery at time t, adherence to 

planned routes becomes crucial. This is formalized by scheduling k 

vehicle trips based solely on requests up to time t, connecting 

offline route design to online adaptability, where efficient decision-

making in response to new requests is pivotal[20]. In the context of 

online food delivery optimization, Smith et al. proposed an 

innovative approach employing a capacitated multi pickup 

formulation and a branch-and-cut algorithm to efficiently 

determine least-cost vehicle routes, taking into account time 

windows, pickup and delivery constraints, as well as fleet capacity. 

Their method demonstrated significant success in solving 

benchmark problem instances with varying node sizes, addressing 

challenges previously reported as unsolved in the literature [22]. 

A similar problem to the OFDP is one referred to as the Online 

traveling salesman problem (Online TSP). In this problem, the 

server or salesman must navigate a graph to fulfill requests while 

trying to minimize the makespan all while only having limited 

information about future requests. Most solutions utilize a myopic 

approach to make dynamic decisions when creating the makespan. 

There is also a special case when the graph, which is a metric space, 

is on a real line and has received much attention in recent years [7, 

10]. Several papers have observed that proper waiting could help 

improve the competitiveness of simple myopic algorithms that are 

implemented for Online TSP. Proper waiting is quite a useful 

concept as it allows for the mitigation of risks that arise from a 

myopic approach to decision making within the algorithm. The 

possibility of a better decision becoming available if a salesman 

were to merely wait for a given period of time is quite high yet only 

has minor overhead when utilized correctly [8, 14]. Currently, there 

are only competitive solutions for the minimal make-span variation 

of the Online TSP. To the best of our knowledge, if one were to 

change the objective to minimizing maximum flow time, there 

would be no algorithms currently that provide a competitive 

solution to the Online TSP with the goal of minimizing maximum 

flow time. This provides an opportunity for further studies to 

explore this variation. 

A related (Offline) TSP problem is the deadline TSP in which every 

vertex i in the graph can only be accessed by the traveling salesman 

within given time-windows [Ri, Di ] of time that is set by the vertex 

[7]. These types of problems are quite difficult in general due to the 

constraints of the time-window as configuring a traveling sequence 

that matches the schedule while minimizing waiting times can be 

very complex. This principle can be applied to other problems that 

may recursively schedule trips by selecting longer trips ahead of 

time. The deadline TSP problem can also be applied to graphs that 

have a star or star-like topology which accurately represent the 

structure of companies that wish to deliver products to their clients 

with the guarantee of same day delivery [15, 16].  In this variation, 

a delivery driver is located at a single facility and must regularly 

return to the facility before completing delivery orders. Therefore, 

it closely mimics the problem in this paper but with additional 

restriction. Other studies have found that compiling multiple order 

requests on singular delivery trips within an arm of the star graph 

before returning to the depot is an effective measure at reducing the 

total delivery time; thus, ensuring that all orders are delivered 

[15,27].  

In addition, certain papers have expounded on these types of 

problems to focus on the aspect of fairness in real world systems as 

certain cities have different geographical areas with varying wealth 

and that greatly affects the performance of same day delivery to 

neighborhoods that are less affluent which causes political and 

class tension[9]. Researchers have attempted to use machine 

learning techniques to create a learning framework that can aid 

companies in adapting their delivery dispatching to have a fairer 

distribution of requests. This approach focuses on improving the 

regional service rate throughout the day by using Q-learning.  

Another incentive for exploring the Offline Food Delivery Problem 

(FDP) emerges from an apparently unrelated challenge, the 

broadcast scheduling problem. In this distinct problem, a server 

maintains a collection of n pages, each with varying sizes, while 

requests for these pages are generated over time, each request being 

a query for one of the pages. The server can broadcast a page to all 

requests for that particular page, a process taking time equivalent 

to the size of the page. The overarching goal is to minimize the 

maximum flow time in this context. Intriguingly, the researchers 

can map the broadcast scheduling problem onto an uncapacitated 

single-vehicle FDP scenario on a star-shaped network, where each 

page's size in the broadcast scheduling problem corresponds to an 

edge in the FDP problem with a length of s/2. It's worth noting that 

the FIFO strategy is known to achieve O(1)-competitiveness for the 

broadcast scheduling problem[8, 11 , 15]. 

3. PRELIMINARIES 

The problem addressed by this study is formally presented as the 

offline version of the Food Delivery Problem (FDP). Given a 

weighted star-like graph G = (V, E) with edge lengths ℓ : E → ℝ 

>0, where ℓ(e) denotes the time needed to traverse the edge e in 

either direction. There is a special vertex o ∈ V called the depot, 
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which represents the restaurant. Located at depot o is a single server 

which has a capacity c ∈ ℤ>0 ∪ {∞}. The function of this server is 

to deliver products from the depot to the customers located on the 

vertices along the different branches of the star-like graph. 

Customer orders come in the form of a set of ℝ requests that are 

sent to the depot. Each request ρ ∈ ℝ is denoted by ρ = (rρ, vρ), 

where rρ ∈ ℝ ≥0 and vρ ∈ V are the arrival time and the delivery 

location of the request respectively. 

 
The server has the limitation that it must travel back to the depot 

before fulfilling any successive customer requests. In addition, the 

server cannot preemptively halt an order mid trip. This variation of 

the problem is offline which means that the server is aware of all 

requests even before they are released when planning trips. The 

output of the offline food delivery problem contains k sequences of 

trips correspondent to the itinerary of the server. The following 

properties need to be satisfied. For every pair of adjacent trips in 

any of the k sequences, the starting time of the latter trip is at least 

the completion time of the former one. Moreover, each request in 

R is served by exactly one trip in the k sequences; in other words, 

the sets of served requests in all trips of the k sequences form a 

partition of R. Let tρ be the time that a request ρ ∈ R is served (by 

the unique trip that serves it). The researchers define the flow time 

of ρ to be tρ − rρ. The goal of the problem is to minimize the 

maximum flow time, i.e, max(ρ∈R(tρ − rρ)) which is the longest 

waiting time across all requests that a customer will experience. 

 

The scope of this study is limited to star and star-like graphs of the 

offline version of the Food Delivery Problem (FDP). The strategies 

deliberated in this paper will be evaluated with respect to the 

characteristics of this particular graph structure. Evaluations 

involving strategies within broader contexts are reserved for 

prospective research endeavors. Emphasis will be placed on 

empirically comparing the heuristics in this study, while theoretical 

proofs of competitiveness will be included whenever feasible. 

 

3.1 Trip Selection Heuristics 

3.1.1 FIFO(First in First out): 

The heuristic that is most intuitive and commonly used, where the 

hub will always serve the nodes or customers based on the arrival 

of their request (Tarrival). The FIFO heuristic ensures that nodes or 

customers are serviced in the order of their arrival (Tarrival). 

Mathematically, for any two nodes i and j where i arrived before j 

(i.e., (Tarrival, i Tarrival, j), the service to node i will start before the 

service to node j. 

Criteria 1 (Fairness):The FIFO heuristic maintains fairness in 

service provision, as it adheres to the principle of serving requests 

in the order they are received. 

 

3.1.2. MRT (Min Return Time): 

This heuristic will prioritize serving the customer node that will 

return the soonest with consideration with its priority value. 

Calculation for the estimated return time will be max(TCurrent - 

Tarrival) + 2d - max((TCurrent - Tarrival), 0). Where “max((TCurrent - 

Tarrival), 0).” pertains to the priority value assigned to each node to 

prevent starvation which is when some of the requests are ignored 

for an indefinite period of time while other requests are favored by 

the heuristic. On the other hand, the symbol d pertains to the time 

of travel to or from between the depot and the customer node. 

Criteria 2 (Priority Calculation): The MRT heuristic calculates 

priority values for nodes based on the time they spend in the queue 

and the time needed to complete their service. The longer a node 

remains in the queue and the faster it can be completed, the higher 

its priority becomes. This ensures that nodes that are faster to 

complete and have been waiting longer are serviced earlier, 

preventing potential starvation and promoting efficiency. 

 

3.1.3. SAT (Single Arm Trips): 

This heuristic is based on the MRT but focuses on completing 

entire arm trips to minimize overhead costs. This heuristic will 

prioritize serving an entire arm that will result in the server 

returning the soonest with consideration of its priority value. 

Arrival time for the entire arm is the maximum arrival time of its 

nodes TArmArrival = max(TNodeArr), and distance is the total distance 

from the hub to the leaf node in that arm d = max(dn). After 

calculating values for the whole arm, the calculation for the return 

time will be the same as MRT max(TCurren- TArmArrival) + 2d - 

max((TCurren- TArmArrival), 0).  

Criteria 3 (Overhead Reduction): SAT reduces overhead costs 

by completing arm trips in a manner that minimizes the total 

distance traveled from the hub to the leaf node in the arm, 

optimizing resource allocation and energy usage. 

 

3.1.4. OAT (Opportunistic Arm Traversal): 

OAT is a hybrid heuristic combining elements of FIFO, SAT and 

MRT.  This heuristic prioritizes cost-efficient whole-arm trips like 

SAT but seamlessly switches to single-node trips during 

downtimes, Downtime is defined as the difference between the 

current time and the arrival time of the next arm DT = Tcurrent-

TArr,Arm+1. In sparse graphs, where total request costs are less than 

the time span between the earliest and latest arrivals, OAT employs 

FIFO for optimal performance. This adaptability optimizes 

overhead costs while addressing varying graph characteristics. 

Criteria 4 (Adaptability): OAT exhibits adaptability by 

dynamically adjusting the traversal strategy based on the system's 

state, allowing for efficient use of resources while considering real-

time dynamics. 

 

3.1.5. BruteForce: 

Brute Force is a straightforward approach where all possible 

combinations or sequences of servicing nodes are exhaustively 

examined without any specific heuristic or optimization. In the 

context of trip selection, this would involve considering every 
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possible order in which nodes or customers can be serviced, 

regardless of their arrival time, priority, or any other factors. 

Criteria 5 (Exhaustive Search): The Brute Force approach 

ensures an exhaustive search through all possible combinations of 

servicing nodes. It explores every permutation without relying on 

specific heuristics, making it a comprehensive but computationally 

intensive method. 

3.2 Testing and Evaluation of Heuristics 

The research design adopted for this study employs a systematic 

approach to investigate, develop, and rigorously test new and 

existing heuristics for the offline version of the Food Delivery 

Problem (FDP). This study encompasses the evaluation of novel 

heuristics, as described in section 3.1, alongside a comprehensive 

analysis of other potential heuristics that could be applied to 

address the problem statement presented. 

 

3.2.1 Data Collection Techniques 

As this study tackles the offline version of the food delivery 

problem, a structured representation is used in the form of starlike 

graphs. It also uses comparative analysis to garner insights from 

preexisting studies involving the offline food delivery problem and 

its possible solutions. Such solutions introduce the usage of a 

number of heuristics which guide the selection of requests for the 

problem. After analyzing these performance metrics, optimization 

techniques are employed to minimize the maximum flow time. 

To simulate the performance of these heuristics, the study conducts 

testing using test cases designed to represent different situations. 

The testing is divided into two segments based on the number of 

requests in the graphs: cases with 10 or fewer requests and cases 

with more than 10 requests. This differentiation is crucial, as it 

addresses the limitations of the exhaustive brute force approach, 

which becomes less effective with larger graphs due to its factorial 

time complexity. 

 

In total, the study generates and tests 5000 cases, 1500 cases among 

which are used as default scenarios with 250 cases allocated for 

each graph type, explained in section 3.2.3, while the remaining 

2000 cases are predefined test cases representing real-world 

scenarios and randomly generated cases with more than 10 

requests. where the Brute-force approach is unable to provide 

timely solutions due to its factorial time complexity. 

By systematically collecting and analyzing data through these 

techniques, the study aims to evaluate and compare the 

effectiveness of various heuristics in addressing the offline food 

delivery problem. 

 

3.2.2 Performance Metrics 

This section outlines a structured approach for evaluating and 

assessing the effectiveness of the heuristics using the three 

performance metrics described below: 

Approximation Ratio of Each Heuristic's Minimum Maximum 

Flow Time: This metric compares the solution produced by each 

heuristic to the optimal solution, providing a measure of how close 

each heuristic gets to the best possible outcome. The minimum 

maximum flow time is a critical factor in food delivery logistics, as 

it represents the time it takes for the last delivery to be completed, 

affecting overall customer satisfaction and operational 

efficiency.[4] 

Time Complexity: This metric quantifies the computational 

resources required by each heuristic to find a solution. Lower time 

complexity indicates faster performance and more efficient 

resource utilization, which is desirable in real-world applications 

where time is a crucial factor. [25] 

Total Traversal Distance: This metric measures the total distance 

traveled by delivery vehicles while fulfilling orders. Minimizing 

traversal distance is important for reducing fuel costs, vehicle wear 

and tear, and overall environmental impact. [24] 

 

3.2.3 Generation of Test Cases 

In addition to the predefined test cases that represent real world case 

scenarios, the research introduces the generation of additional test 

scenarios using a discrete probability distribution, specifically the 

Poisson distribution. This generation process comprises two 

elements: the graph and the requests. 

The graph is generated using the following procedure: 

 

1. Randomize the number of arms. 

2. For each arm, randomize the number of nodes along it. 

3. For each edge, assign a randomized value for distance. 

 

Table 1: Graph Generation’s Key Parameters per Graph Type 

 Default 
Sparse 

Request 

Dense 

Request 

Sparse 

Graphs 

Dense 

Graphs 

Few 

Arms 

Many 

Arms 

Minimum number 

of arms 
2 2 2 2 2 2 5 

Maximum number 

of arms 
8 8 8 8 8 3 24 

Average number 

of nodes per arm* 
1.5 1.5 1.5 1.5 1.5 1.5 1.5 

Average distance 

between nodes** 
20 30 10 20 20 20 20 

Average number 

of requests per arm* 
1.5 1.5 1.5 0.125 10 1.5 1.5 

* Randomized using Poisson distribution 

** Distance is in 1 unit of time = 1 minute 

Numbers are approximated from real life delivery scenarios i.e. Shakeys 

 

Table 1 enumerates several key parameters that influence each 

process of the graph generation procedure, which are modified to 

fit each test scenario. The number of arms is randomized within a 

range set by the minimum and maximum number of arms. In 

addition, the average number of nodes per arm is another key 

parameter which is used during the randomization of the number of 

nodes per arm. Finally, the weight of each edge is generated 

randomly which utilizes a given average distance between the 

nodes which affects the density of the generated graph. 

Given this generated graph, the researchers can then generate a list 

of requests: 

1. Default 

2. Dense Graphs 

3. Sparse Graphs 

4. Graphs with Many Arms  

5. Graphs with few arms 

6. Dense Requests 

7. Sparse Requests 
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1. For each arm in the graph, use Poisson distribution to 

generate the number of requests along an arm 

2. For each request, select a node and randomize the request 

arrival time within the set time interval 

 

Similar to the graph generation procedure, there are key parameters 

responsible for influencing the generation of the requests on the 

graph. Maximum time is the total time span. 1 hour time intervals 

were selected as a standard for test scenarios for the research. 

Another key parameter is the average number of requests which is 

used to determine the number of requests per arm of the graph 

through the usage of Poisson distribution. 

As shown in Table 1, graph types are classified according to the 

values of specific parameters. Sparse request graphs feature a low 

average distance between nodes, while graphs with dense requests 

feature a higher than default value. To generate sparse and dense 

graphs, the average number of requests per arm are altered from the 

default value. Graphs with few arms and many arms have 

proportional minimum and maximum numbers of arms. Given 

these parameters, certain heuristics tend to perform better 

depending on the graph type. For example, FIFO and MRT would 

be more efficient on a sparse request graph due to the low average 

distance between nodes, but SAT perform sub optimally as requests 

are less dense, making single-arm trips less efficient. 

The modification of these key parameters allows for the researchers 

to generate test scenarios under the following different 

classifications: 

 

 

4. EXPERIMENTAL RESULTS 
As stated in section 3.2.1, the experimental results section is 

divided into two segments: the first pertains to graphs with 10 or 

fewer requests, while the second addresses cases involving more 

than 10 requests. This differentiation is essential as the Brute-force 

approach exhibits limited efficacy when confronted with graphs 

containing more than 10 requests, primarily attributed to its O(n!) 

time complexity. Consequently, the subsequent analysis and 

discussions will navigate these distinct scenarios to provide a 

nuanced understanding of the heuristic's performance under 

varying request loads. 

 

Section 1: Approximation ratio in Minimizing Maximum Flow 

Time on 10 or fewer requests 

Table 2: Heuristics as to Overall Approximation Ratio 

 RBest RAve RWorst 

FIFO 1.00 1.49 6.47 

MRT 1.00 1.56 5.89 

SAT 1.00 2.89 36.55 

OAT 1.00 1.24 2.89 

Bruteforce 1.00 1.00 1.00 

Table 2 compares the approximation ratios of various heuristics for 

minimizing maximum flow time on 10 or fewer requests. FIFO and 

MRT achieve optimal ratios in the best-case scenario but perform 

less efficiently in average and worst cases. SAT exhibits good 

performance initially but suffers significantly in worst-case 

scenarios. OAT, on the other hand, maintains consistently good 

ratios across scenarios, making it a balanced choice among the 4. 

Bruteforce achieves optimal ratios but is computationally 

impractical due to its exhaustive nature. 

 

Table 3: Heuristic as to average approximation ratio on Different 

Graph Types 

 Sparse 

Request 

Dense 

Request 

Sparse 

Graphs 

Dense 

Graphs 

Few 

Arms 

Many 

Arms 

FIFO 1.23 1.69 1.16 1.57 1.82 1.31 

MRT 1.34 1.73 1.27 1.64 1.91 1.35 

SAT 4.72 1.53 7.74 2.4 1.56 2.1 

OAT 1.15 1.25 1.12 1.31 1.27 1.19 

Bruteforce 1.00 1.00 1.00 1.00 1.00 1.00 

Table 3 outlines Approximation Ratios for various heuristics across 

different graph scenarios in the context of the Offline version of the 

Food Delivery Problem (FDP). SAT exhibits notably higher 

average approximation ratios across all scenarios, particularly on 

sparse graphs and on cases with sparse request distribution, 

indicating potential inefficiency in these specific situations. 

Conversely, OAT consistently maintains lower ratios across 

different graph types and request densities, suggesting its robust 

performance in various scenarios. Additionally, while FIFO and 

MRT perform adequately, they show increased ratios on dense 

graphs compared to sparse ones, highlighting the impact of graph 

density on the heuristic’s efficiency. 

 

 

Section 2: Approximation Ratio of Minimizing Maximum Flow 

Time on More Than 10 Requests 

Table 4: Heuristics as to Overall Approximation Ratio relative to 

the Best output among all the heuristics 

 RBest RAve RWorst 

FIFO 1 2.05 5.84 

MRT 1 2.06 5.84 

SAT 1 2.04 18.47 

OAT 1 1.02 1.81 

Bruteforce - - - 

Table 4 highlights the relative performance of heuristics concerning 

their approximation ratios compared to the best performing 

heuristic at each particular case. OAT stands out by consistently 

maintaining approximation ratios close to the best case, indicating 

its robustness across different scenarios. Conversely, FIFO, MRT, 

and SAT show higher ratios relative to the best answer, particularly 

in worst-case scenarios, suggesting potential inefficiencies in these 

situations. This underscores the importance of algorithm choice, 

with OAT offering promising performance in minimizing 

maximum flow time. 

 

Table 4: Heuristic’s Performance Relative to Time Complexity 

 
RWorst(<=10) RWorst(10+) 

Time 

Complexity 

FIFO 6.47 5.84 O(n) 
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MRT 5.89 5.84 O(n2) 

SAT 36.55 18.47 O(n2) 

OAT 2.89 1.81 O(n2) 

Bruteforce 1.00 - O(n!) 

As achieving a delicate equilibrium between competitiveness and 

computational efficiency is important, OAT stands out as the best 

and preferred choice. It maintains a worst case approximation ratio 

of 2.89 for smaller inputs and 1.82 for larger inputs, indicating 

effective performance with a quadratic time complexity (O(n2)), 

making it more scalable than the factorial time complexity of the 

Brute force. But if scalability for considerably larger datasets is a 

primary concern, FIFO (First-In-First-Out) might be more suitable. 

Its approximation ratio of 6.47 for smaller inputs and 5.84 for larger 

inputs, paired with a linear time complexity (O(n)), indicates more 

efficient scaling with increasing input sizes compared to heuristics 

with quadratic or factorial complexities. 

The time complexity of FIFO, denoted as O(n), reflects its 

straightforward and linear handling of requests. Each request is 

processed sequentially without any nested loops or additional 

calculations, leading to a direct scaling with the number of requests, 

denoted as 'n'. In contrast, MRT, SAT, and OAT exhibit quadratic 

time complexity, O(n^2), as their operations often involve nested 

loops or calculations that increase quadratically with the number of 

requests. These heuristics commonly integrate loops for priority 

calculation and starvation prevention, contributing to their 

increased computational load. 

For the Brute force approach, characterized by a factorial time 

complexity of O(n!), exhaustive exploration of all possible 

combinations is employed by considering every permutation of the 

input elements. This exhaustive search strategy entails exploring 'n 

* (n-1) * (n-2) * ... * 1 = n!' possible combinations, where the 

number of possibilities decreases by one at each step. 

Consequently, the computational effort grows factorially with the 

number of requests, making it impractical for larger datasets and 

rendering it inefficient for many real-world applications. 

5. PROPERTIES 

In addition to heuristic evaluations, we established two properties 

to deepen our understanding of the problem: 

Property 1: Batch Delivery Option Enhances Efficiency 

This property highlights the efficiency gain from batch delivery 

options, affirming that batch delivery generally outperforms 

individual deliveries in terms of overall efficiency. Leveraging 

batch delivery strategies can reduce travel time and enhance 

resource utilization effectively. 

Property 2: Option For Strategic Waiting Is Advantageous 

This property emphasizes the strategic advantage of allowing 

waiting in decision-making processes. By demonstrating that there 

exists at least one solution for any graph G and set of request R 

where waiting improves decision quality, this property underscores 

the importance of flexibility in logistical operations. Incorporating 

waiting options can lead to better outcomes, particularly in 

scenarios requiring optimization of delivery schedules. 

 

5.1 Elaboration on Key Properties 
Property 1: Batch Delivery Option Enhances Efficiency. 

Improving Efficiency through the Batch Delivery Option. The 

availability of an option to perform batch delivery, particularly 

when serving multiple customers on the same arm simultaneously, 

enhances overall delivery efficiency by reducing travel time and 

optimizing resource utilization. 

Proposition: For any given set of delivery requests Rn, the overall 

delivery efficiency achieved through the batch delivery option 

𝐸𝑏𝑎𝑡𝑐ℎ,𝑅𝑛 is higher or equal to the efficiency of serving single 

customers individually 𝐸𝑠𝑖𝑛𝑔𝑙𝑒,𝑅𝑛 

 

𝐸𝑏𝑎𝑡𝑐ℎ,𝑅𝑛  ≥ 𝐸𝑠𝑖𝑛𝑔𝑙𝑒,𝑅𝑛 

Definitions: 

𝐸𝑏𝑎𝑡𝑐ℎ,𝑅𝑛 : Overall delivery efficiency when the batch delivery 

option is utilized for the set of requests 𝑅𝑛. 

𝐸𝑠𝑖𝑛𝑔𝑙𝑒,𝑅𝑛: Overall delivery efficiency when single customers are 

served individually for the set of requests 𝑅𝑛. 

𝑇𝑏𝑎𝑡𝑐ℎ: Total travel time for batch delivery. 

𝑇𝑠𝑖𝑛𝑔𝑙𝑒: Total travel time for individual deliveries. 

 

Base Case: When addressing a single delivery request (|R|=1), the 

delivery efficiency achieved through the batch delivery option is 

equivalent to serving a single customer individually 𝐸𝑏𝑎𝑡𝑐ℎ,𝑅𝑛  =

𝐸𝑠𝑖𝑛𝑔𝑙𝑒,𝑅𝑛. Thus, the base case holds. 

Inductive Step: For any set of delivery requests 𝑅𝑛+1, let's assume 

the proposition holds true for 𝑅𝑛 i.e., 𝐸𝑏𝑎𝑡𝑐ℎ,𝑅𝑛  ≥ 𝐸𝑠𝑖𝑛𝑔𝑙𝑒,𝑅𝑛 

Case 1: Batch Delivery Option 

When the option to perform batch delivery is allowed for the set of 

requests  𝑅𝑛+1, let ∣ 𝑅𝑛+1∣=k, where k > 1. Denote the total travel 

time for batch delivery as 𝑇𝑏𝑎𝑡𝑐ℎ. Then, the overall delivery 

efficiency with batch delivery is:  

𝐸𝑏𝑎𝑡𝑐ℎ,𝑅𝑛+1 =  
𝑘

𝑇𝐵𝑎𝑡𝑐ℎ
 

 

Case 2: Serving Single Customers 

If only serving single customers individually is considered, the 

overall delivery efficiency is determined based on individual 

deliveries: 𝐸𝑠𝑖𝑛𝑔𝑙𝑒,𝑅𝑛+1 Without the option for batch delivery, the 

efficiency relies on the traditional approach of serving single 

customers separately. 
1

𝑇𝑠𝑖𝑛𝑔𝑙𝑒
 

Comparing Cases:  

To show that 𝐸𝑏𝑎𝑡𝑐ℎ,𝑅𝑛  ≥ 𝐸𝑠𝑖𝑛𝑔𝑙𝑒,𝑅𝑛, we need to show    

𝑘

𝑇𝑏𝑎𝑡𝑐ℎ
≥  

1

𝑇𝑠𝑖𝑛𝑔𝑙𝑒
 

 

Consider the time saved by batch delivery, denoted by 𝛥𝑇 =

𝑇𝑠𝑖𝑛𝑔𝑙𝑒 − 𝑇𝑏𝑎𝑡𝑐ℎ. We can express 𝑇𝑏𝑎𝑡𝑐ℎ in terms of 𝑇𝑠𝑖𝑛𝑔𝑙𝑒 and 𝛥𝑇 

as 𝑇𝑏𝑎𝑡𝑐ℎ = 𝑇𝑠𝑖𝑛𝑔𝑙𝑒 −  𝛥𝑇 

 

Therefore, 𝐸𝑏𝑎𝑡𝑐ℎ,𝑅𝑛+1 = 
𝑘

𝑇𝑠𝑖𝑛𝑔𝑙𝑒− 𝛥𝑇
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Since 𝛥𝑇 represents time saved, 𝑇𝑠𝑖𝑛𝑔𝑙𝑒 −  𝛥𝑇 ≤  𝑇𝑠𝑖𝑛𝑔𝑙𝑒 , which 

implies  
1

𝑇𝑠𝑖𝑛𝑔𝑙𝑒− 𝛥𝑇
≥  

1

𝑇𝑠𝑖𝑛𝑔𝑙𝑒
 

 

Thus, 𝐸𝑏𝑎𝑡𝑐ℎ,𝑅𝑛+1  ≥ 𝐸𝑠𝑖𝑛𝑔𝑙𝑒,𝑅𝑛+1 

 

Property 2: Option For Strategic Waiting Is Advantageous. 

Proposition: Let G denote any graph and R denote any set of 

requests. Then, there exists a solution S, such that the decision 

quality when waiting is allowed denoted qwith_waiting, is greater than 

or equal to the decision quality when waiting is not allowed, 

denoted qwithout_waiting. 

In symbolic notation: 

 

∀G∀R∃ S: qwith_waiting ≥ qwithout_waiting 

 

This statement asserts that regardless of the specific graph or set of 

requests, there exists at least one solution where the decision 

quality achieved by waiting is greater than or equal to the decision 

quality obtained without waiting. 
Proof: To prove this property, we need to show that there exists at 

least one solution where the decision quality achieved by strategic 

waiting is greater than or equal to the decision quality obtained 

without waiting. 

Let's denote: 

 

Qno_wait(G,R) as the decision quality without waiting. 

Qwith_wait(G,R,W) as the decision quality with strategic waiting, 

where W represents the waiting strategy. 

 

The change in decision quality due to strategic waiting is given by: 

 

ΔQ(G,R,W) = Qwith_wait(G,R,W) - Qno_wait(G,R) 

 

Now, we need to prove that for any graph G and any set of requests 

R, there exists a solution S such that: qwith_wait ≥ qno_wait , where : 

qwith_wait and qno_wait  represent the decision qualities achieved with 

and without waiting, respectively. Mathematically, we can 

represent this as: 

 

∀G∀R∃S: Qwith_wait(G,R,W) ≥ Qno_wait(G,R) 

 

To prove this statement, let's consider All possible cases: 

Case 1: Qwith_wait(G,R,W) = Qno_wait(G,R).  If the decision quality 

with waiting is equal to the decision quality without waiting, then 

the property holds trivially. 

Case 2: Qwith_wait(G,R,W) > Qno_wait(G,R). If the decision quality 

with waiting is greater than the decision quality without waiting, 

then the property holds true. 

Case 3: Qwith_wait(G,R,W) < Qno_wait(G,R).  Let's denote the 

maximum flow time achieved with waiting as Qmax_with_wait  and 

without waiting as Qmax_no_wait. Then, we have: 

 

Qmax_with_wait = maxρ∈R(tρ−rρ) 

Qmax_no_wait = maxρ∈R(tρ′−rρ) 

 

Where tρ is the time at which request ρ is served when waiting is 

allowed, and tρ′ is the time at which request ρ is served when 

waiting is not allowed. 

 

Given  Qwith_wait(G,R,W) < Qno_wait(G,R).  

we have: Qmax_with_wait < Qmax_no_wait 

 

Let's consider the definition of Qmax_with_wait and Qmax_no_wait 

in terms of tρ and tρ′. Since both tρ and tρ′ are arrival times plus the 

time taken for service, we can express them as: 

 

tρ  = rρ+service_timeρ  

tρ′ = rρ+service_timeρ′ 

 

where service_timeρ and service_timeρ′ are the service times for 

request ρ with and without waiting, respectively. 

Since waiting allows the server to optimize its route and potentially 

reduce service times, we can express service_timeρ as: 

 

service_timeρ = min_service_timeρ 

 

where min_service_timeρ is the minimum possible service time for 

request ρ when waiting is allowed. Therefore, we have: 

 

tρ = rρ + min_service_timeρ 

 

Now, let's examine tρ′. Since waiting is not allowed, the service 

time service_timeρ′ remains the same as the minimum service time 

when waiting is allowed. Hence: 

 

tρ′ = rρ + min_service_timeρ 

 

Given these expressions for tρ and tρ′, we can see that both 

Qmax_with_wait   and  Qmax_no_wait are equal, making the case of 

Qwith_wait(G,R,W) < Qno_wait(G,R) impossible.  

Thus, the assumption that Qwith_wait(G,R,W) < Qno_wait(G,R) is 

invalid, and, therefore, Qwith_wait(G,R,W) ≥ Qno_wait(G,R) holds true. 

6. CONCLUSION 

This study conducted a thorough evaluation and comparison of four 

distinct heuristics—FIFO, MRT, SAT, and OAT—against each 

other and the exhaustive brute force approach, as elaborated in 

Section 3.1. 

The results reveal that SAT stands out with notably higher average 

approximation ratios across all scenarios, particularly on sparse 

graphs with many arms, suggesting potential inefficiency in these 

specific situations. Conversely, OAT consistently maintains lower 

ratios across different graph types and request densities, indicating 

its robust performance in various scenarios. Moreover, FIFO and 

MRT demonstrate acceptable performance, but they exhibit 

increased ratios on dense graphs compared to sparse ones, 
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highlighting the sensitivity of the heuristic efficiency to graph 

density variations.  

In addition to heuristic evaluations, we established two properties 

to deepen our understanding of the problem: Property 1 highlights 

the efficiency gain from batch delivery options, affirming that batch 

delivery generally outperforms individual deliveries in terms of 

overall efficiency. Leveraging batch delivery strategies can reduce 

travel time and enhance resource utilization effectively. Property 2 

emphasizes the strategic advantage of allowing waiting in decision-

making processes. By demonstrating that there exists at least one 

solution for any graph G and set of request R where waiting 

improves decision quality, this property underscores the 

importance of flexibility in logistical operations. Incorporating 

waiting options can lead to better outcomes, particularly in 

scenarios requiring optimization of delivery schedules. 

Overall, when considering both time complexity and average 

approximation ratio which are the key criteria in evaluating 

heuristics, the Opportunistic Arm Traversal heuristic emerges as a 

strong contender as it strikes a balance between competitiveness 

and computational efficiency, demonstrating effectiveness across 

different graph types and request densities. 
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