
Comparative Analysis of Heuristics for the Offline Food Delivery

Problem on Starlike Graphs
Jose Alfonso Barreiro

Ateneo de Manila University

 Quezon City, Philippines

jose.barreiro@student.ateneo.edu

Mikael Giannes Bernardino
 Ateneo de Manila University

 Quezon City, Philippines

mikael.bernardino@student.ateneo.edu

Erick Gabriel Lopez
 Ateneo de Manila University

 Quezon City, Philippines

erick.lopez@student.ateneo.edu

John Paul Vergara
Ateneo de Manila University

 Quezon City, Philippines

 jpvergara@ateneo.edu

ABSTRACT

This paper explores the offline version of the Food Delivery

Problem (oFDP) on starlike graphs. In oFDP, customer requests are

sent to the central hub/restaurant (depot) which has a single server

that has to decide where and when to deliver customer requests

(orders). The server is required to return to the depot to pick up new

orders before serving requests. The objective is to minimize the

maximum flow time, i.e., the maximum time between the

submission and completion of a request. Thus, this problem

attempts to reduce the longest waiting time that a single customer

may experience. The researchers study the oFDP on star-like

graphs to develop several heuristics and compare their performance

using generated experimental data. Four heuristics—FIFO, MRT,

SAT, and OAT—were evaluated and benchmarked. OAT

consistently performed well across different scenarios while SAT

showed higher average approximation ratios, especially on certain

graph types. FIFO and MRT exhibited acceptable performance but

were sensitive to graph density. OAT emerged as a strong

contender, balancing competitiveness and efficiency. Additionally,

two properties were established: one highlighting the efficiency

gain from batch delivery options, and the other emphasizing the

strategic advantage of allowing waiting.

KEYWORDS

Offline food delivery problem (oFDP), starlike graphs, maximum

flow time, heuristics, simulation, scheduling

1 INTRODUCTION

In the past decade, the landscape of purchasing and consuming

foods has witnessed a substantial transformation [5], propelled by

the rapid growth of online food ordering platforms. This trend

experienced an unprecedented acceleration, with the recent global

pandemic exerting a profound influence on the relevance of these

services. The pandemic catalyzed a shift in lifestyles, prompting

individuals to embrace remote work and confinement to their

homes, thereby elevating the appeal of convenient online food

delivery[6]. In consequence, traditional avenues for purchasing

meals have faced limitations within this evolving context[1]. This

transformative shift has ushered in a paradigm where online food

delivery has become a common choice, garnering favor among both

consumers and businesses alike[6].

Nonetheless, this surge in demand for online food delivery services

comes hand in hand with the potential challenge of optimizing

delivery operations. The imminent risk of service overload

necessitates a proactive approach to ensure seamless customer

experiences. In this context, the need to manage delivery orders

efficiently and mitigate potential delays assumes of utmost

importance. Among the array of factors that collectively influence

service quality of online food delivery, the duration elapsed

between order placement and food delivery – commonly known as

flow time – emerges as a critical dimension. This temporal aspect

holds the potential to substantially shape the overall customer

satisfaction for online food delivery. To further explore the

complexities of optimizing delivery operations in the context of

offline food delivery, this research aims to address the following

questions: 1. What heuristics are applicable as solutions to the

offline food delivery problem and how do they compare to one

another in terms of efficiency, approximation ratio, robustness, and

minimal traversal distance? 2. What properties can be derived from

this problem, and how do they contribute to the performance of the

algorithms?

In this study, we evaluate four heuristics in offline food delivery,

comparing their efficiency and robustness. Additionally, we

identify two key properties that contribute to their performance: the

efficiency gain from batch delivery and the strategic advantage of

allowing waiting. These findings advance understanding and

optimization strategies in food delivery operations.

2 REVIEW OF RELATED WORK

In contrast to flow time scheduling problems that have primarily

focused on preemptive solutions, the Food Delivery Problem

presents a distinct scenario where preemption lacks practicality due

to the preference for deploying additional servers over preempting

those already in transit. This underscores the significance of the

Food Delivery Problem (FDP) as an intriguing research area, driven

not only by its real-world applicability, but also by its rarity as a

flow time routing problem with the potential for non-trivial

competitive algorithms[20].

mailto:erick.lopez@student.ateneo.edu

PCSC2024, May 2024, Laguna, Philippines Lopez et al.

The offline version of the food delivery problem (oFDP) shares

close ties with numerous vehicle routing problems. For instance,

the uncapacitated version (where c = ∞) with a single vehicle (k =

1) FDP, where all requests emerge at time 0, encompasses a

variation of the path problem for the traveling salesman. In cases

where the vehicle's capacity is finite (c ≠ ∞), the previously

mentioned FDP transforms into the Capacitated Vehicle Routing

Problem (CVRP). A broader context is explored through the Dial-

a-Ride Problem (DaRP), where not only the delivery destination

but also individual pickup points can be specified by each

customer. The vehicle is tasked with transporting the customer

from their pickup location to their designated delivery spot. While

much of the research on offline CVRP/DaRP has concentrated on

the objective of minimizing total travel distance, these variations

involve intricate problem nuances[21].

While the offline and online versions of the food delivery problem

are closely linked, they have a clear distinction rooted in temporal

dynamics. In the offline context, fixed parameters are known ahead,

while the online scenario deals with incremental delivery requests

over time. When deciding to start a delivery at time t, adherence to

planned routes becomes crucial. This is formalized by scheduling k

vehicle trips based solely on requests up to time t, connecting

offline route design to online adaptability, where efficient decision-

making in response to new requests is pivotal[20]. In the context of

online food delivery optimization, Smith et al. proposed an

innovative approach employing a capacitated multi pickup

formulation and a branch-and-cut algorithm to efficiently

determine least-cost vehicle routes, taking into account time

windows, pickup and delivery constraints, as well as fleet capacity.

Their method demonstrated significant success in solving

benchmark problem instances with varying node sizes, addressing

challenges previously reported as unsolved in the literature [22].

A similar problem to the OFDP is one referred to as the Online

traveling salesman problem (Online TSP). In this problem, the

server or salesman must navigate a graph to fulfill requests while

trying to minimize the makespan all while only having limited

information about future requests. Most solutions utilize a myopic

approach to make dynamic decisions when creating the makespan.

There is also a special case when the graph, which is a metric space,

is on a real line and has received much attention in recent years [7,

10]. Several papers have observed that proper waiting could help

improve the competitiveness of simple myopic algorithms that are

implemented for Online TSP. Proper waiting is quite a useful

concept as it allows for the mitigation of risks that arise from a

myopic approach to decision making within the algorithm. The

possibility of a better decision becoming available if a salesman

were to merely wait for a given period of time is quite high yet only

has minor overhead when utilized correctly [8, 14]. Currently, there

are only competitive solutions for the minimal make-span variation

of the Online TSP. To the best of our knowledge, if one were to

change the objective to minimizing maximum flow time, there

would be no algorithms currently that provide a competitive

solution to the Online TSP with the goal of minimizing maximum

flow time. This provides an opportunity for further studies to

explore this variation.

A related (Offline) TSP problem is the deadline TSP in which every

vertex i in the graph can only be accessed by the traveling salesman

within given time-windows [Ri, Di] of time that is set by the vertex

[7]. These types of problems are quite difficult in general due to the

constraints of the time-window as configuring a traveling sequence

that matches the schedule while minimizing waiting times can be

very complex. This principle can be applied to other problems that

may recursively schedule trips by selecting longer trips ahead of

time. The deadline TSP problem can also be applied to graphs that

have a star or star-like topology which accurately represent the

structure of companies that wish to deliver products to their clients

with the guarantee of same day delivery [15, 16]. In this variation,

a delivery driver is located at a single facility and must regularly

return to the facility before completing delivery orders. Therefore,

it closely mimics the problem in this paper but with additional

restriction. Other studies have found that compiling multiple order

requests on singular delivery trips within an arm of the star graph

before returning to the depot is an effective measure at reducing the

total delivery time; thus, ensuring that all orders are delivered

[15,27].

In addition, certain papers have expounded on these types of

problems to focus on the aspect of fairness in real world systems as

certain cities have different geographical areas with varying wealth

and that greatly affects the performance of same day delivery to

neighborhoods that are less affluent which causes political and

class tension[9]. Researchers have attempted to use machine

learning techniques to create a learning framework that can aid

companies in adapting their delivery dispatching to have a fairer

distribution of requests. This approach focuses on improving the

regional service rate throughout the day by using Q-learning.

Another incentive for exploring the Offline Food Delivery Problem

(FDP) emerges from an apparently unrelated challenge, the

broadcast scheduling problem. In this distinct problem, a server

maintains a collection of n pages, each with varying sizes, while

requests for these pages are generated over time, each request being

a query for one of the pages. The server can broadcast a page to all

requests for that particular page, a process taking time equivalent

to the size of the page. The overarching goal is to minimize the

maximum flow time in this context. Intriguingly, the researchers

can map the broadcast scheduling problem onto an uncapacitated

single-vehicle FDP scenario on a star-shaped network, where each

page's size in the broadcast scheduling problem corresponds to an

edge in the FDP problem with a length of s/2. It's worth noting that

the FIFO strategy is known to achieve O(1)-competitiveness for the

broadcast scheduling problem[8, 11 , 15].

3. PRELIMINARIES

The problem addressed by this study is formally presented as the

offline version of the Food Delivery Problem (FDP). Given a

weighted star-like graph G = (V, E) with edge lengths ℓ : E → ℝ

>0, where ℓ(e) denotes the time needed to traverse the edge e in

either direction. There is a special vertex o ∈ V called the depot,

Comparative Analysis of Heuristics for the Offline Food Delivery

Problem on Starlike Graphs
PCSC2024, May 2024, Laguna, Philippines

which represents the restaurant. Located at depot o is a single server

which has a capacity c ∈ ℤ>0 ∪ {∞}. The function of this server is

to deliver products from the depot to the customers located on the

vertices along the different branches of the star-like graph.

Customer orders come in the form of a set of ℝ requests that are

sent to the depot. Each request ρ ∈ ℝ is denoted by ρ = (rρ, vρ),

where rρ ∈ ℝ ≥0 and vρ ∈ V are the arrival time and the delivery

location of the request respectively.

The server has the limitation that it must travel back to the depot

before fulfilling any successive customer requests. In addition, the

server cannot preemptively halt an order mid trip. This variation of

the problem is offline which means that the server is aware of all

requests even before they are released when planning trips. The

output of the offline food delivery problem contains k sequences of

trips correspondent to the itinerary of the server. The following

properties need to be satisfied. For every pair of adjacent trips in

any of the k sequences, the starting time of the latter trip is at least

the completion time of the former one. Moreover, each request in

R is served by exactly one trip in the k sequences; in other words,

the sets of served requests in all trips of the k sequences form a

partition of R. Let tρ be the time that a request ρ ∈ R is served (by

the unique trip that serves it). The researchers define the flow time

of ρ to be tρ − rρ. The goal of the problem is to minimize the

maximum flow time, i.e, max(ρ∈R(tρ − rρ)) which is the longest

waiting time across all requests that a customer will experience.

The scope of this study is limited to star and star-like graphs of the

offline version of the Food Delivery Problem (FDP). The strategies

deliberated in this paper will be evaluated with respect to the

characteristics of this particular graph structure. Evaluations

involving strategies within broader contexts are reserved for

prospective research endeavors. Emphasis will be placed on

empirically comparing the heuristics in this study, while theoretical

proofs of competitiveness will be included whenever feasible.

3.1 Trip Selection Heuristics

3.1.1 FIFO(First in First out):

The heuristic that is most intuitive and commonly used, where the

hub will always serve the nodes or customers based on the arrival

of their request (Tarrival). The FIFO heuristic ensures that nodes or

customers are serviced in the order of their arrival (Tarrival).

Mathematically, for any two nodes i and j where i arrived before j

(i.e., (Tarrival, i Tarrival, j), the service to node i will start before the

service to node j.

Criteria 1 (Fairness):The FIFO heuristic maintains fairness in

service provision, as it adheres to the principle of serving requests

in the order they are received.

3.1.2. MRT (Min Return Time):

This heuristic will prioritize serving the customer node that will

return the soonest with consideration with its priority value.

Calculation for the estimated return time will be max(TCurrent -

Tarrival) + 2d - max((TCurrent - Tarrival), 0). Where “max((TCurrent -

Tarrival), 0).” pertains to the priority value assigned to each node to

prevent starvation which is when some of the requests are ignored

for an indefinite period of time while other requests are favored by

the heuristic. On the other hand, the symbol d pertains to the time

of travel to or from between the depot and the customer node.

Criteria 2 (Priority Calculation): The MRT heuristic calculates

priority values for nodes based on the time they spend in the queue

and the time needed to complete their service. The longer a node

remains in the queue and the faster it can be completed, the higher

its priority becomes. This ensures that nodes that are faster to

complete and have been waiting longer are serviced earlier,

preventing potential starvation and promoting efficiency.

3.1.3. SAT (Single Arm Trips):

This heuristic is based on the MRT but focuses on completing

entire arm trips to minimize overhead costs. This heuristic will

prioritize serving an entire arm that will result in the server

returning the soonest with consideration of its priority value.

Arrival time for the entire arm is the maximum arrival time of its

nodes TArmArrival = max(TNodeArr), and distance is the total distance

from the hub to the leaf node in that arm d = max(dn). After

calculating values for the whole arm, the calculation for the return

time will be the same as MRT max(TCurren- TArmArrival) + 2d -

max((TCurren- TArmArrival), 0).

Criteria 3 (Overhead Reduction): SAT reduces overhead costs

by completing arm trips in a manner that minimizes the total

distance traveled from the hub to the leaf node in the arm,

optimizing resource allocation and energy usage.

3.1.4. OAT (Opportunistic Arm Traversal):

OAT is a hybrid heuristic combining elements of FIFO, SAT and

MRT. This heuristic prioritizes cost-efficient whole-arm trips like

SAT but seamlessly switches to single-node trips during

downtimes, Downtime is defined as the difference between the

current time and the arrival time of the next arm DT = Tcurrent-

TArr,Arm+1. In sparse graphs, where total request costs are less than

the time span between the earliest and latest arrivals, OAT employs

FIFO for optimal performance. This adaptability optimizes

overhead costs while addressing varying graph characteristics.

Criteria 4 (Adaptability): OAT exhibits adaptability by

dynamically adjusting the traversal strategy based on the system's

state, allowing for efficient use of resources while considering real-

time dynamics.

3.1.5. BruteForce:

Brute Force is a straightforward approach where all possible

combinations or sequences of servicing nodes are exhaustively

examined without any specific heuristic or optimization. In the

context of trip selection, this would involve considering every

PCSC2024, May 2024, Laguna, Philippines Lopez et al.

possible order in which nodes or customers can be serviced,

regardless of their arrival time, priority, or any other factors.

Criteria 5 (Exhaustive Search): The Brute Force approach

ensures an exhaustive search through all possible combinations of

servicing nodes. It explores every permutation without relying on

specific heuristics, making it a comprehensive but computationally

intensive method.

3.2 Testing and Evaluation of Heuristics

The research design adopted for this study employs a systematic

approach to investigate, develop, and rigorously test new and

existing heuristics for the offline version of the Food Delivery

Problem (FDP). This study encompasses the evaluation of novel

heuristics, as described in section 3.1, alongside a comprehensive

analysis of other potential heuristics that could be applied to

address the problem statement presented.

3.2.1 Data Collection Techniques

As this study tackles the offline version of the food delivery

problem, a structured representation is used in the form of starlike

graphs. It also uses comparative analysis to garner insights from

preexisting studies involving the offline food delivery problem and

its possible solutions. Such solutions introduce the usage of a

number of heuristics which guide the selection of requests for the

problem. After analyzing these performance metrics, optimization

techniques are employed to minimize the maximum flow time.

To simulate the performance of these heuristics, the study conducts

testing using test cases designed to represent different situations.

The testing is divided into two segments based on the number of

requests in the graphs: cases with 10 or fewer requests and cases

with more than 10 requests. This differentiation is crucial, as it

addresses the limitations of the exhaustive brute force approach,

which becomes less effective with larger graphs due to its factorial

time complexity.

In total, the study generates and tests 5000 cases, 1500 cases among

which are used as default scenarios with 250 cases allocated for

each graph type, explained in section 3.2.3, while the remaining

2000 cases are predefined test cases representing real-world

scenarios and randomly generated cases with more than 10

requests. where the Brute-force approach is unable to provide

timely solutions due to its factorial time complexity.

By systematically collecting and analyzing data through these

techniques, the study aims to evaluate and compare the

effectiveness of various heuristics in addressing the offline food

delivery problem.

3.2.2 Performance Metrics

This section outlines a structured approach for evaluating and

assessing the effectiveness of the heuristics using the three

performance metrics described below:

Approximation Ratio of Each Heuristic's Minimum Maximum

Flow Time: This metric compares the solution produced by each

heuristic to the optimal solution, providing a measure of how close

each heuristic gets to the best possible outcome. The minimum

maximum flow time is a critical factor in food delivery logistics, as

it represents the time it takes for the last delivery to be completed,

affecting overall customer satisfaction and operational

efficiency.[4]

Time Complexity: This metric quantifies the computational

resources required by each heuristic to find a solution. Lower time

complexity indicates faster performance and more efficient

resource utilization, which is desirable in real-world applications

where time is a crucial factor. [25]

Total Traversal Distance: This metric measures the total distance

traveled by delivery vehicles while fulfilling orders. Minimizing

traversal distance is important for reducing fuel costs, vehicle wear

and tear, and overall environmental impact. [24]

3.2.3 Generation of Test Cases

In addition to the predefined test cases that represent real world case

scenarios, the research introduces the generation of additional test

scenarios using a discrete probability distribution, specifically the

Poisson distribution. This generation process comprises two

elements: the graph and the requests.

The graph is generated using the following procedure:

1. Randomize the number of arms.

2. For each arm, randomize the number of nodes along it.

3. For each edge, assign a randomized value for distance.

Table 1: Graph Generation’s Key Parameters per Graph Type

 Default
Sparse

Request

Dense

Request

Sparse

Graphs

Dense

Graphs

Few

Arms

Many

Arms

Minimum number

of arms
2 2 2 2 2 2 5

Maximum number

of arms
8 8 8 8 8 3 24

Average number

of nodes per arm*
1.5 1.5 1.5 1.5 1.5 1.5 1.5

Average distance

between nodes**
20 30 10 20 20 20 20

Average number

of requests per arm*
1.5 1.5 1.5 0.125 10 1.5 1.5

* Randomized using Poisson distribution

** Distance is in 1 unit of time = 1 minute

Numbers are approximated from real life delivery scenarios i.e. Shakeys

Table 1 enumerates several key parameters that influence each

process of the graph generation procedure, which are modified to

fit each test scenario. The number of arms is randomized within a

range set by the minimum and maximum number of arms. In

addition, the average number of nodes per arm is another key

parameter which is used during the randomization of the number of

nodes per arm. Finally, the weight of each edge is generated

randomly which utilizes a given average distance between the

nodes which affects the density of the generated graph.

Given this generated graph, the researchers can then generate a list

of requests:

1. Default

2. Dense Graphs

3. Sparse Graphs

4. Graphs with Many Arms

5. Graphs with few arms

6. Dense Requests

7. Sparse Requests

Comparative Analysis of Heuristics for the Offline Food Delivery

Problem on Starlike Graphs
PCSC2024, May 2024, Laguna, Philippines

1. For each arm in the graph, use Poisson distribution to

generate the number of requests along an arm

2. For each request, select a node and randomize the request

arrival time within the set time interval

Similar to the graph generation procedure, there are key parameters

responsible for influencing the generation of the requests on the

graph. Maximum time is the total time span. 1 hour time intervals

were selected as a standard for test scenarios for the research.

Another key parameter is the average number of requests which is

used to determine the number of requests per arm of the graph

through the usage of Poisson distribution.

As shown in Table 1, graph types are classified according to the

values of specific parameters. Sparse request graphs feature a low

average distance between nodes, while graphs with dense requests

feature a higher than default value. To generate sparse and dense

graphs, the average number of requests per arm are altered from the

default value. Graphs with few arms and many arms have

proportional minimum and maximum numbers of arms. Given

these parameters, certain heuristics tend to perform better

depending on the graph type. For example, FIFO and MRT would

be more efficient on a sparse request graph due to the low average

distance between nodes, but SAT perform sub optimally as requests

are less dense, making single-arm trips less efficient.

The modification of these key parameters allows for the researchers

to generate test scenarios under the following different

classifications:

4. EXPERIMENTAL RESULTS
As stated in section 3.2.1, the experimental results section is

divided into two segments: the first pertains to graphs with 10 or

fewer requests, while the second addresses cases involving more

than 10 requests. This differentiation is essential as the Brute-force

approach exhibits limited efficacy when confronted with graphs

containing more than 10 requests, primarily attributed to its O(n!)

time complexity. Consequently, the subsequent analysis and

discussions will navigate these distinct scenarios to provide a

nuanced understanding of the heuristic's performance under

varying request loads.

Section 1: Approximation ratio in Minimizing Maximum Flow

Time on 10 or fewer requests

Table 2: Heuristics as to Overall Approximation Ratio

 RBest RAve RWorst

FIFO 1.00 1.49 6.47

MRT 1.00 1.56 5.89

SAT 1.00 2.89 36.55

OAT 1.00 1.24 2.89

Bruteforce 1.00 1.00 1.00

Table 2 compares the approximation ratios of various heuristics for

minimizing maximum flow time on 10 or fewer requests. FIFO and

MRT achieve optimal ratios in the best-case scenario but perform

less efficiently in average and worst cases. SAT exhibits good

performance initially but suffers significantly in worst-case

scenarios. OAT, on the other hand, maintains consistently good

ratios across scenarios, making it a balanced choice among the 4.

Bruteforce achieves optimal ratios but is computationally

impractical due to its exhaustive nature.

Table 3: Heuristic as to average approximation ratio on Different

Graph Types

 Sparse

Request

Dense

Request

Sparse

Graphs

Dense

Graphs

Few

Arms

Many

Arms

FIFO 1.23 1.69 1.16 1.57 1.82 1.31

MRT 1.34 1.73 1.27 1.64 1.91 1.35

SAT 4.72 1.53 7.74 2.4 1.56 2.1

OAT 1.15 1.25 1.12 1.31 1.27 1.19

Bruteforce 1.00 1.00 1.00 1.00 1.00 1.00

Table 3 outlines Approximation Ratios for various heuristics across

different graph scenarios in the context of the Offline version of the

Food Delivery Problem (FDP). SAT exhibits notably higher

average approximation ratios across all scenarios, particularly on

sparse graphs and on cases with sparse request distribution,

indicating potential inefficiency in these specific situations.

Conversely, OAT consistently maintains lower ratios across

different graph types and request densities, suggesting its robust

performance in various scenarios. Additionally, while FIFO and

MRT perform adequately, they show increased ratios on dense

graphs compared to sparse ones, highlighting the impact of graph

density on the heuristic’s efficiency.

Section 2: Approximation Ratio of Minimizing Maximum Flow

Time on More Than 10 Requests

Table 4: Heuristics as to Overall Approximation Ratio relative to

the Best output among all the heuristics

 RBest RAve RWorst

FIFO 1 2.05 5.84

MRT 1 2.06 5.84

SAT 1 2.04 18.47

OAT 1 1.02 1.81

Bruteforce - - -

Table 4 highlights the relative performance of heuristics concerning

their approximation ratios compared to the best performing

heuristic at each particular case. OAT stands out by consistently

maintaining approximation ratios close to the best case, indicating

its robustness across different scenarios. Conversely, FIFO, MRT,

and SAT show higher ratios relative to the best answer, particularly

in worst-case scenarios, suggesting potential inefficiencies in these

situations. This underscores the importance of algorithm choice,

with OAT offering promising performance in minimizing

maximum flow time.

Table 4: Heuristic’s Performance Relative to Time Complexity

RWorst(<=10) RWorst(10+)

Time

Complexity

FIFO 6.47 5.84 O(n)

PCSC2024, May 2024, Laguna, Philippines Lopez et al.

MRT 5.89 5.84 O(n2)

SAT 36.55 18.47 O(n2)

OAT 2.89 1.81 O(n2)

Bruteforce 1.00 - O(n!)

As achieving a delicate equilibrium between competitiveness and

computational efficiency is important, OAT stands out as the best

and preferred choice. It maintains a worst case approximation ratio

of 2.89 for smaller inputs and 1.82 for larger inputs, indicating

effective performance with a quadratic time complexity (O(n2)),

making it more scalable than the factorial time complexity of the

Brute force. But if scalability for considerably larger datasets is a

primary concern, FIFO (First-In-First-Out) might be more suitable.

Its approximation ratio of 6.47 for smaller inputs and 5.84 for larger

inputs, paired with a linear time complexity (O(n)), indicates more

efficient scaling with increasing input sizes compared to heuristics

with quadratic or factorial complexities.

The time complexity of FIFO, denoted as O(n), reflects its

straightforward and linear handling of requests. Each request is

processed sequentially without any nested loops or additional

calculations, leading to a direct scaling with the number of requests,

denoted as 'n'. In contrast, MRT, SAT, and OAT exhibit quadratic

time complexity, O(n^2), as their operations often involve nested

loops or calculations that increase quadratically with the number of

requests. These heuristics commonly integrate loops for priority

calculation and starvation prevention, contributing to their

increased computational load.

For the Brute force approach, characterized by a factorial time

complexity of O(n!), exhaustive exploration of all possible

combinations is employed by considering every permutation of the

input elements. This exhaustive search strategy entails exploring 'n

* (n-1) * (n-2) * ... * 1 = n!' possible combinations, where the

number of possibilities decreases by one at each step.

Consequently, the computational effort grows factorially with the

number of requests, making it impractical for larger datasets and

rendering it inefficient for many real-world applications.

5. PROPERTIES

In addition to heuristic evaluations, we established two properties

to deepen our understanding of the problem:

Property 1: Batch Delivery Option Enhances Efficiency

This property highlights the efficiency gain from batch delivery

options, affirming that batch delivery generally outperforms

individual deliveries in terms of overall efficiency. Leveraging

batch delivery strategies can reduce travel time and enhance

resource utilization effectively.

Property 2: Option For Strategic Waiting Is Advantageous

This property emphasizes the strategic advantage of allowing

waiting in decision-making processes. By demonstrating that there

exists at least one solution for any graph G and set of request R

where waiting improves decision quality, this property underscores

the importance of flexibility in logistical operations. Incorporating

waiting options can lead to better outcomes, particularly in

scenarios requiring optimization of delivery schedules.

5.1 Elaboration on Key Properties
Property 1: Batch Delivery Option Enhances Efficiency.

Improving Efficiency through the Batch Delivery Option. The

availability of an option to perform batch delivery, particularly

when serving multiple customers on the same arm simultaneously,

enhances overall delivery efficiency by reducing travel time and

optimizing resource utilization.

Proposition: For any given set of delivery requests Rn, the overall

delivery efficiency achieved through the batch delivery option

𝐸𝑏𝑎𝑡𝑐ℎ,𝑅𝑛 is higher or equal to the efficiency of serving single

customers individually 𝐸𝑠𝑖𝑛𝑔𝑙𝑒,𝑅𝑛

𝐸𝑏𝑎𝑡𝑐ℎ,𝑅𝑛 ≥ 𝐸𝑠𝑖𝑛𝑔𝑙𝑒,𝑅𝑛

Definitions:

𝐸𝑏𝑎𝑡𝑐ℎ,𝑅𝑛 : Overall delivery efficiency when the batch delivery

option is utilized for the set of requests 𝑅𝑛.

𝐸𝑠𝑖𝑛𝑔𝑙𝑒,𝑅𝑛: Overall delivery efficiency when single customers are

served individually for the set of requests 𝑅𝑛.

𝑇𝑏𝑎𝑡𝑐ℎ: Total travel time for batch delivery.

𝑇𝑠𝑖𝑛𝑔𝑙𝑒: Total travel time for individual deliveries.

Base Case: When addressing a single delivery request (|R|=1), the

delivery efficiency achieved through the batch delivery option is

equivalent to serving a single customer individually 𝐸𝑏𝑎𝑡𝑐ℎ,𝑅𝑛 =

𝐸𝑠𝑖𝑛𝑔𝑙𝑒,𝑅𝑛. Thus, the base case holds.

Inductive Step: For any set of delivery requests 𝑅𝑛+1, let's assume

the proposition holds true for 𝑅𝑛 i.e., 𝐸𝑏𝑎𝑡𝑐ℎ,𝑅𝑛 ≥ 𝐸𝑠𝑖𝑛𝑔𝑙𝑒,𝑅𝑛

Case 1: Batch Delivery Option

When the option to perform batch delivery is allowed for the set of

requests 𝑅𝑛+1, let ∣ 𝑅𝑛+1∣=k, where k > 1. Denote the total travel

time for batch delivery as 𝑇𝑏𝑎𝑡𝑐ℎ. Then, the overall delivery

efficiency with batch delivery is:

𝐸𝑏𝑎𝑡𝑐ℎ,𝑅𝑛+1 =
𝑘

𝑇𝐵𝑎𝑡𝑐ℎ

Case 2: Serving Single Customers

If only serving single customers individually is considered, the

overall delivery efficiency is determined based on individual

deliveries: 𝐸𝑠𝑖𝑛𝑔𝑙𝑒,𝑅𝑛+1 Without the option for batch delivery, the

efficiency relies on the traditional approach of serving single

customers separately.
1

𝑇𝑠𝑖𝑛𝑔𝑙𝑒

Comparing Cases:

To show that 𝐸𝑏𝑎𝑡𝑐ℎ,𝑅𝑛 ≥ 𝐸𝑠𝑖𝑛𝑔𝑙𝑒,𝑅𝑛, we need to show

𝑘

𝑇𝑏𝑎𝑡𝑐ℎ
≥

1

𝑇𝑠𝑖𝑛𝑔𝑙𝑒

Consider the time saved by batch delivery, denoted by 𝛥𝑇 =

𝑇𝑠𝑖𝑛𝑔𝑙𝑒 − 𝑇𝑏𝑎𝑡𝑐ℎ. We can express 𝑇𝑏𝑎𝑡𝑐ℎ in terms of 𝑇𝑠𝑖𝑛𝑔𝑙𝑒 and 𝛥𝑇

as 𝑇𝑏𝑎𝑡𝑐ℎ = 𝑇𝑠𝑖𝑛𝑔𝑙𝑒 − 𝛥𝑇

Therefore, 𝐸𝑏𝑎𝑡𝑐ℎ,𝑅𝑛+1 =
𝑘

𝑇𝑠𝑖𝑛𝑔𝑙𝑒− 𝛥𝑇

Comparative Analysis of Heuristics for the Offline Food Delivery

Problem on Starlike Graphs
PCSC2024, May 2024, Laguna, Philippines

Since 𝛥𝑇 represents time saved, 𝑇𝑠𝑖𝑛𝑔𝑙𝑒 − 𝛥𝑇 ≤ 𝑇𝑠𝑖𝑛𝑔𝑙𝑒 , which

implies
1

𝑇𝑠𝑖𝑛𝑔𝑙𝑒− 𝛥𝑇
≥

1

𝑇𝑠𝑖𝑛𝑔𝑙𝑒

Thus, 𝐸𝑏𝑎𝑡𝑐ℎ,𝑅𝑛+1 ≥ 𝐸𝑠𝑖𝑛𝑔𝑙𝑒,𝑅𝑛+1

Property 2: Option For Strategic Waiting Is Advantageous.

Proposition: Let G denote any graph and R denote any set of

requests. Then, there exists a solution S, such that the decision

quality when waiting is allowed denoted qwith_waiting, is greater than

or equal to the decision quality when waiting is not allowed,

denoted qwithout_waiting.

In symbolic notation:

∀G∀R∃ S: qwith_waiting ≥ qwithout_waiting

This statement asserts that regardless of the specific graph or set of

requests, there exists at least one solution where the decision

quality achieved by waiting is greater than or equal to the decision

quality obtained without waiting.
Proof: To prove this property, we need to show that there exists at

least one solution where the decision quality achieved by strategic

waiting is greater than or equal to the decision quality obtained

without waiting.

Let's denote:

Qno_wait(G,R) as the decision quality without waiting.

Qwith_wait(G,R,W) as the decision quality with strategic waiting,

where W represents the waiting strategy.

The change in decision quality due to strategic waiting is given by:

ΔQ(G,R,W) = Qwith_wait(G,R,W) - Qno_wait(G,R)

Now, we need to prove that for any graph G and any set of requests

R, there exists a solution S such that: qwith_wait ≥ qno_wait , where :

qwith_wait and qno_wait represent the decision qualities achieved with

and without waiting, respectively. Mathematically, we can

represent this as:

∀G∀R∃S: Qwith_wait(G,R,W) ≥ Qno_wait(G,R)

To prove this statement, let's consider All possible cases:

Case 1: Qwith_wait(G,R,W) = Qno_wait(G,R). If the decision quality

with waiting is equal to the decision quality without waiting, then

the property holds trivially.

Case 2: Qwith_wait(G,R,W) > Qno_wait(G,R). If the decision quality

with waiting is greater than the decision quality without waiting,

then the property holds true.

Case 3: Qwith_wait(G,R,W) < Qno_wait(G,R). Let's denote the

maximum flow time achieved with waiting as Qmax_with_wait and

without waiting as Qmax_no_wait. Then, we have:

Qmax_with_wait = maxρ∈R(tρ−rρ)

Qmax_no_wait = maxρ∈R(tρ′−rρ)

Where tρ is the time at which request ρ is served when waiting is

allowed, and tρ′ is the time at which request ρ is served when

waiting is not allowed.

Given Qwith_wait(G,R,W) < Qno_wait(G,R).

we have: Qmax_with_wait < Qmax_no_wait

Let's consider the definition of Qmax_with_wait and Qmax_no_wait

in terms of tρ and tρ′. Since both tρ and tρ′ are arrival times plus the

time taken for service, we can express them as:

tρ = rρ+service_timeρ

tρ′ = rρ+service_timeρ′

where service_timeρ and service_timeρ′ are the service times for

request ρ with and without waiting, respectively.

Since waiting allows the server to optimize its route and potentially

reduce service times, we can express service_timeρ as:

service_timeρ = min_service_timeρ

where min_service_timeρ is the minimum possible service time for

request ρ when waiting is allowed. Therefore, we have:

tρ = rρ + min_service_timeρ

Now, let's examine tρ′. Since waiting is not allowed, the service

time service_timeρ′ remains the same as the minimum service time

when waiting is allowed. Hence:

tρ′ = rρ + min_service_timeρ

Given these expressions for tρ and tρ′, we can see that both

Qmax_with_wait and Qmax_no_wait are equal, making the case of

Qwith_wait(G,R,W) < Qno_wait(G,R) impossible.

Thus, the assumption that Qwith_wait(G,R,W) < Qno_wait(G,R) is

invalid, and, therefore, Qwith_wait(G,R,W) ≥ Qno_wait(G,R) holds true.

6. CONCLUSION

This study conducted a thorough evaluation and comparison of four

distinct heuristics—FIFO, MRT, SAT, and OAT—against each

other and the exhaustive brute force approach, as elaborated in

Section 3.1.

The results reveal that SAT stands out with notably higher average

approximation ratios across all scenarios, particularly on sparse

graphs with many arms, suggesting potential inefficiency in these

specific situations. Conversely, OAT consistently maintains lower

ratios across different graph types and request densities, indicating

its robust performance in various scenarios. Moreover, FIFO and

MRT demonstrate acceptable performance, but they exhibit

increased ratios on dense graphs compared to sparse ones,

PCSC2024, May 2024, Laguna, Philippines Lopez et al.

highlighting the sensitivity of the heuristic efficiency to graph

density variations.

In addition to heuristic evaluations, we established two properties

to deepen our understanding of the problem: Property 1 highlights

the efficiency gain from batch delivery options, affirming that batch

delivery generally outperforms individual deliveries in terms of

overall efficiency. Leveraging batch delivery strategies can reduce

travel time and enhance resource utilization effectively. Property 2

emphasizes the strategic advantage of allowing waiting in decision-

making processes. By demonstrating that there exists at least one

solution for any graph G and set of request R where waiting

improves decision quality, this property underscores the

importance of flexibility in logistical operations. Incorporating

waiting options can lead to better outcomes, particularly in

scenarios requiring optimization of delivery schedules.

Overall, when considering both time complexity and average

approximation ratio which are the key criteria in evaluating

heuristics, the Opportunistic Arm Traversal heuristic emerges as a

strong contender as it strikes a balance between competitiveness

and computational efficiency, demonstrating effectiveness across

different graph types and request densities.

ACKNOWLEDGMENTS

Dr. Andrei D. Coronel, PhD, Jose Alfredo A. de Vera III, Winfer

Tabares, Felix II P. Muga: Our distinguished panelists whose

critical role in shaping the quality of our work during defense

sessions. We thank them for their insightful critiques and

invaluable guidance, which significantly contributed to the

refinement of our research.

Ateneo de Manila University: We extend our sincere appreciation

to Ateneo for providing the conducive environment and resources

that allowed this research to flourish. Family, Friends, Classmates,

and Teachers: To our support network, we express gratitude for
your unwavering encouragement, serving as a constant source of

motivation throughout this journey. This study is a collaborative

effort, and each acknowledgment represents a vital piece of the
puzzle that has culminated in its completion. To everyone who

played a part in this journey, we extend our deepest thanks.

REFERENCES
[1] Aday, S., & Aday, M. S. (2020). Impact of COVID-19 on the food supply chain.

Food Quality and Safety, 4(4), 167-180. https://doi.org/10.1093/fqsafe/fyaa024

[2] Agnets, A., Cosmi, M., Nicosia, G., & Pacifici, A. (2023). Two is better than one?

Order aggregation in a meal delivery scheduling problem. Computers & Industrial

Engineering, 183, 109514. doi:10.1016/j.cie.2023.109514

[3] ANON. (2023). Poisson Distribution. Retrieved September 24, 2023 from

https://www.sciencedirect.com/topics/mathematics/poisson-distribution

[4]Ausiello, G., Paschos, V. Th. (2006). Reductions, completeness and the hardness of

approximability. European Journal of Operational Research, 172(3), 719-739.

https://doi.org/10.1016/j.ejor.2005.06.006

[5]Axon, S., Lent, T., Njoku A. (2023). Shifting sustainable lifestyle practices and

behaviour during times of pandemic disruptive change: Implications for on-going

socio-technical transitions, Energy Research & Social Science, 102,

https://doi.org/10.1016/j.erss.2023.103188.

[6] Balieva, G. (2023). Online food purchasing during COVID-19 pandemic.

Scientific Papers Series Management, Economic Engineering in Agriculture and Rural

Development,

23(2), 51-58. https://managementjournal.usamv.ro/

[7] Bansal, N., Blum, A., Chawla, S., & Meyerson, A. (2004). Approximation

algorithms for deadline-TSP and vehicle routing with time-windows. In Proceedings

of the Thirty-Sixth Annual ACM Symposium on Theory of Computing (STOC ’04)

(pp. 1–10). doi:10.1145/1007352.1007385

[8] Bansal, N., Charikar, M., Khanna, S., & Naor, J. (2005). Approximating the

average response time in broadcast scheduling. In Proceedings of the Sixteenth Annual

ACM-SIAM Symposium on Discrete Algorithms (SODA) (pp. 215–221).

Philadelphia, PA: Society for Industrial and Applied Mathematics.

[9] Bienkowski, M., Kraska, A., & Liu, H.-H. (2021). Traveling repairperson,

unrelated machines, and other stories about average completion times. arXiv preprint

arXiv:2102.06904.

[10] Bjelde, A., et al. (2000). Tight bounds for online TSP on the line. In Proceedings

of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms (pp. 994–

1005). New York: ACM.

[11] Borodin, A., & El-Yaniv, R. (2005). Online computation and competitive

analysis. Cambridge, MA: Cambridge University Press.

[12] Chang, J., Erlebach, T., Gailis, R., & Khuller, S. (2011). Broadcast scheduling:

Algorithms and complexity. ACM Transactions on Algorithms, 7(4), 1–14.

doi:10.1145/2000807

[13] Chen, P.-C., Demaine, E. D., Liao, C.-S., & Wei, H.-T. (2019). Waiting is not

easy but worth it: The online TSP on the line revisited. arXiv preprint

arXiv:1907.00317.

[14] Chen, X., Wang, T., Thomas, B. W., & Ulmer, M. W. (2023). Same-day delivery

with fair customer service. European Journal of Operational Research, 308(2), 738–

751. doi:10.1016/j.ejor.2022.12.009

[15] Chekuri, C., Im, S., Moseley, B., Fiat, A., & Sanders, P. (2009). Minimizing

maximum response time and delay factor in broadcast scheduling. In Algorithms -

ESA 2009 (pp. 444–455). Berlin, Heidelberg: Springer.

[16] Cosmi, M., Oriolo, G., Piccialli, V., & Ventura, P. (2019). Single courier single

restaurant meal delivery (without routing). Operations Research Letters, 47(6), 537–

541. doi:10.1016/j.orl.2019.09.007

[17] Feuerstein, E., & Stougie, L. (2001). On-line single-server dial-a-ride problems.

Theoretical Computer Science, 268(1), 91–105. doi:10.1016/S0304-3975(00)00261-9

[18] Fiat, A., & Woeginger, G. J. (1998). Competitive analysis of algorithms. In Online

algorithms: The state of the art (pp. 1–12). Berlin, Heidelberg: Springer.

[19]Juris Hartmanis and Richard E. Stearns (1965). On the computational complexity

of algorithms. Transactions of the American Mathematical Society, 117(1965), 285-

306.

[20] Guo, X., Li, S., Luo, K., & Zhang, Y. (2021). Online food delivery to minimize

maximum flow time. arXiv preprint arXiv:2110.15772.

[21] Guo, X., Luo, K., Tang, Z. G., & Zhang, Y. (2022). The online food delivery

problem on stars. Theoretical Computer Science, 928, 13–26.

doi:10.1016/j.tcs.2022.06.007

[22] Kohar, A., & Jakhar, S. K. (2021). A capacitated multi pickup online food delivery

problem with time windows: A branch-and-cut algorithm. Annals of Operations

Research. doi:10.1007/S10479-021-04145-6

[23] Lopez, J. (2023). Examining the online food delivery problem on starlike graphs.

[24] Nicola, D., Vetschera, R., & Dragomir, A. (2019). Total distance approximations

for routing solutions. Computers & Operations Research, 102, 67-74.

https://doi.org/10.1016/j.cor.2018.10.008

[25] Reyes, D., Erera, A. L., & Savelsbergh, M. W. P. (2018). Complexity of routing

problems with release dates and deadlines. European Journal of Operational Research,

266(1), 29–34. doi:10.1016/j.ejor.2017.09.020

[26] Russell, S. J., Norvig, P., & Chang, M.-W. (2023). Artificial intelligence: A

modern approach (4th ed.). Pearson.

[27] Ulmer, M., Nowak, M., Mattfeld, D., & Kaminski, B. (2020). Binary driver-

customer familiarity in service routing. European Journal of Operational Research,

286(2), 477–493. doi:10.1016/j.ejor.2020.03.037

https://doi.org/10.1016/j.ejor.2005.06.006
https://doi.org/10.1016/j.erss.2023.103188
https://managementjournal.usamv.ro/
https://doi.org/10.1016/j.cor.2018.10.008

