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ABSTRACT
With the rise of antimicrobial resistance that decreases the effective-
ness of antibiotics in treating bacterial infections, phage therapy
is being studied as an alternative to antibiotics. Phage therapy is
the use of phages to treat bacterial infections by letting the phages
infect and lyse the bacterial pathogen at the site of infection. Phages
are known to be able to infect a narrow range of hosts only, but
laboratory experiments to verify an interaction between a phage
and a bacterium are both costly and time-consuming. To mitigate
this, several studies have explored the use of machine learning
classifiers to predict whether a phage-host pair interacts or not.
In this study, we formulated the prediction problem as a binary
classification problem with the host and phage proteomes as input,
and explored different kinds of protein representations, including
protein embeddings that are generated by protein language models,
that can serve as an input to machine learning classifiers. In our
experiments, under a phylogeny-based train-test data split, protein
embeddings did not necessarily improve classifier performance
compared to using the conventional k-mer profile representation.
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1 INTRODUCTION
Antimicrobial resistance (AMR) threatens the use of antibiotics by
decreasing its effectiveness in treating bacterial infections [19, 24],
which results in longer duration of illness, higher rates of mortality,
increased costs of treatment, and inability to perform procedures
that rely on effective antibiotics to prevent infection [19]. In 2019
alone, there were an estimated 1.27 million deaths globally directly
attributable to drug resistance [27]. Resistance arises due to the
excessive use of antibiotics, which exerts selective pressure that
allows microorganisms that have developed resistance, to have a
competitive advantage to survive and proliferate [14, 19].

With the emergence of antibiotic-resistant strains of life threat-
ening microbes [4], phage therapy is being studied as an alternative
to antibiotics [11, 15]. Phages are viruses that are capable of in-
fecting and replicating within bacterial cells [13]. Phage therapy
is the use of phages to treat bacterial infection, which is done by
letting the phages infect and lyse the bacterial pathogen at the site
of infection [13, 23]. A specific strain of phage is known to be able

to infect a narrow range of hosts only, which can be an advantage
compared to a wider host range of antibiotics, that not only kills the
target pathogenic bacteria but also other bacteria, some of which
might be beneficial [13, 33].

Experimental methods used to identify phage-specific hosts re-
quire costly and time-consuming lab experiments to verify whether
there is an interaction between the phage and the host [21]. To miti-
gate the cost and time consumed by lab experiments, computational
approaches have been developed.

Recently, the use of machine learning classifiers for predicting
phage-host interaction have been explored. One group of studies
uses genomic information from only the phages. Young et al. [37]
formulated the problem as taking the genome representation (DNA
k-mer, amino acid k-mer, physio-chemical k-mer, protein domains)
of the phage as input, and predicting a possible host. They trained
a Support Vector Machine classifier separately for each host. Boeck-
aerts et al. [5] used only the phages’ Receptor-Binding Proteins
(RBP) as input. An RBP was represented by a vector composed of
handcrafted DNA and protein features such as nucleotide frequen-
cies, GC-content, codon frequencies, and others. The RBP vector
representation served as the input to their multi-class classifier
to identify the phage’s possible hosts. Mark et al. [12] extended
Boeckaerts et al.’s study by using Protein Language Models (PLM)
to acquire vector representations, also called as protein embeddings,
which serve as the input to their multi-class classifier.

There are also studies that formulate the phage-host interaction
prediction problem as a binary classification problem that takes as
input features derived from both the phage and the host, and predict
whether the phage-host pair will interact or not. PredPHI [21] is
a neural network classifier consisting of convolutional and fully
connected layers. The input to PredPHI is a matrix that consists
of derived protein features across the whole proteome of both the
phage and the host, such as frequency of amino acids, abundance
of each chemical component, and molecular weights. PHIAF [22],
similar to PredPHI, incorporates an attention layer into its neu-
ral network, adds DNA-derived features for its input, and uses
a Generative Adversarial Network (GAN) for data augmentation.
PhageHostLearn [7] uses RBPs of phages and K-locus proteins as
the input, and predicts whether the phage-host pair will interact
or not. Embeddings for the protein sequence, obtained using the
ESM-2 protein language model, served as an input to an XGBoost
classifier.
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In this study, we defined the phage-host prediction problem as
taking the proteome (entire set of proteins) of both the phage and
the host as the input, and deciding whether the phage-host pair
interacts or not. We tested embeddings produced by different PLMs,
namely ProtVec[2], Seq2Vec[18], ProtBert[10], and Prot5[10] to rep-
resent the protein sequences of both the host and the phage. We
also tested non-PLM-based protein representations prior studies
have used, such as k-mer profile and statistical profile[21], to deter-
mine if the use of protein embeddings does improve the prediction
of phage-host interaction. In a departure from previous studies, we
separated our training and test set according to the host’s phylum
classification instead of just randomly splitting the dataset, so that
the host sequences seen on the test set are as unrelated/independent
as possible from the one found on the training set. We found that,
under this strict train-test data split, protein embeddings did not
necessarily improve classifier performance compared to using the
conventional k-mer profile representation.

2 MATERIALS AND METHODS
Shown in Figure 1 is the overview of the methodology used in this
study.

2.1 Problem definition
We defined the phage-host prediction problem as taking the pro-
teome (entire set of proteins) of both the phage and the host as
input, and deciding whether the phage-host pair interacts or not.
We tested various protein representations to determine the best
protein representation to use as an input to classifiers when pre-
dicting phage-host interaction. We used several machine learning
classifiers to predict whether the phage-host pair interacts or not.

2.2 Data collection
We collected 5,257 phage-host interaction records fromVirusHostDB [25]
consisting of 780 distinct hosts and 4,854 distinct phages. We also
acquired 4,830 proteomes of phages from VirusHostDB [25] and 308
proteomes of bacteria from NCBI [31]. Since there are phage-host
interaction records where either the phage or the host’s proteome
is not accessible online, we removed those phage-host interaction
records in our dataset, which resulted in our final dataset containing
3,390 phage-host interaction records.We accessed VirusHostDB [25]
last January 2023 and accessed NCBI [31] datasets last February
2023.

We also collected protein sequences from the Swiss-Prot data-
base [9], containing 570,157 protein sequences, which we accessed
last June 2023. We used it for training protein language models not
available online such as ProtVec [2] and Seq2Vec [18].

2.3 Train-test split and negative pairs
generation

Our test set consists of phage-host interaction pairs where the
host’s phylum classifications are Actinobacteria, Cyanobacteria,
Spirochaetes, Tenericutes, Bacteroidetes, Chlamydiae, Fusobacteria,
and Deinococcus-Thermus, while the remaining phage-host inter-
action pairs not found on the test set, where its host’s phylum
classification are Firmicutes and Proteobacteria, were included in

the training set. The split according to the host’s phylum classi-
fication was done so that hosts found on the training set are as
unrelated as possible to the hosts found on the test set. After split-
ting the training and test set, negative pairs of phage-host were
generated independently for both sets, where we randomly paired
phage-host found in its respective set, and the pair had no previ-
ously recorded interactions. Lastly, the training set was split into 4
folds using sklearn’s GroupKFold [29] and was grouped according
to the host’s order classification. The GroupKFold split is done to
ensure that the same group is not seen in both training and vali-
dation sets. The overview of dataset composition is visualized in
Figure 2. Looking at the train-test split at the species level, the test
set contains 55 distinct species, while the training folds contain 38,
58, 51, and 53 distinct species respectively from fold 1 to fold 4.

2.4 Protein representations
In this study, we mainly explored the use of protein embeddings
generated by protein language models to the phage-host inter-
action problem. The use of protein embeddings is motivated by
the advancements of large language models for natural languages,
which provide representations for words in the form of vectors,
often called word embeddings [3]. Similar ideas have been recently
implemented for biological sequences. [17]

Protein language models that provide protein embeddings have
been recently applied to different bioinformatics problems [17].
These embeddings when applied to classification tasks, have been
shown to provide better results compared to using hand-crafted
features [34, 36].

2.4.1 k-mer profile. The k-mer profile of a protein sequence is
a vector that contains the frequencies of all the possible substrings
of length k found in the sequence. Since a proteome consists of
multiple protein sequences, we calculated the summation of the
k-mer profiles over all the protein sequences, and did this separately
for the phages and the hosts. The value of k used in this study is
set to 3.

2.4.2 Statistical profile. The PredPHI classifier built by Li et
al. [21] proposed a proteome representation which extracted 27
features, where 21 of those are the frequency of amino acids (20
amino acids, 1 indicating unknown amino acid), 5 of those are the
abundance of each chemical component in the sequences (carbon,
hydrogen, oxygen, nitrogen, and sulfur), and the last 1 indicates the
sum of molecular weights of all amino acids in the sequence. These
27 protein features across the entire proteome were combined using
statistical measures such as mean, standard deviation, maximum,
minimum, median, and variance. The final encoded features are in
the form of a matrix with a shape of 6 x 27 x 2, where 6 denotes
the six statistical measures (mean, std, max, min, median, var), 27
denotes the 27 protein features, and 2 represents the features for the
phage and its host. For convenience, we termed this representation
as statistical profile in this study. Lastly, we flattened the statisti-
cal profile into a vector to serve as an input to machine learning
classifiers.

2.4.3 ProtVec. ProtVec [2] is a type of protein language model
based on Word2Vec [26], which outputs a 100-dimensional vector
embedding given a 3-mer of amino acids. To generate a ProtVec
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Figure 1: Flowchart summarizing the methodology of this study, which consists of 5 core components shown as dashed boxes.
The first component is about collecting phage-host interaction records and protein sequences. The second component is about
the train-test split method. The third component is about the generation of different protein representations. The fourth
component is about the use of different machine learning classifier. And the last component is about the evaluation of protein
representations and classifiers. Each component is discussed on Materials and methods section.

representation for a protein sequence, we generated ProtVec embed-
dings for each 3-mers that make up the protein sequence, summed
up all the 3-mer embeddings element-wise, and then divided it
by the number of 3-mer embeddings generated for that protein
sequence. Since phages and hosts proteome consists of multiple
proteins, to acquire the proteome representation, we summed up

element-wise all the ProtVec representation of each protein se-
quence found in the proteome, then divided it by the number of
proteins found in the proteome.

The ProtVec model is not available online, so we built it by train-
ing a Word2Vec model available on the gensim python library [30].
We trained the model using the Swiss-Prot database [9], and used
the hyper-parameters specified in ProtVec’s paper (vector_size: 100,
window: 25, sg: 1).
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Figure 2: Sunburst chart visualizing the data for training and
validation composition. The innermost pie chart visualizes
the folds and the test set. The middle pie chart visualizes the
hosts composition of each folds and test set at order level.
The outermost pie chart visualizes the hosts composition of
each folds and test set at species level.

2.4.4 Seq2Vec. Seq2Vec [18] is a type of protein embedding
model based on Doc2Vec [20], where the main difference over
ProtVec is the ability to generate a single embedding for the entire
protein sequences regardless of its length, rather than having an
embedding for each 3-mers. To acquire the proteome representation,
we summed element-wise up all the embeddings of each protein
sequence found in the proteome and divided it by the number of
proteins found in the proteome. The Seq2Vec model is unavailable
online, so we built it by training a Doc2Vec model available on
the gensim python library [30]. We trained the model using the
Swiss-Prot database [9], and used the hyper-parameters specified
in Seq2Vec’s paper (vector_size: 250, window: 5).

2.4.5 ProtTrans. ProtTrans [10] developed several protein em-
bedding models, two of which are used in this study namely Prot-
Bert and Prot5-XL. Prot5-XL was considered as one of their top-
performing models when tested on different tasks such as protein
subcellular localization prediction and secondary structure predic-
tion, and it is used in this study to generate embeddings for each
phage. However, host protein sequences are very long and we lack
computing resources to generate Prot5-XL embeddings for each
host, so we used ProtBert instead to generate embeddings for each
host. To acquire the final proteome representation, we summed up
element-wise all the embeddings of each protein sequence found
in the proteome and divided it by the number of proteins found in
the proteome.

Pre-trained ProtTrans models are available on HuggingFace’s
transformer library [35].

2.5 Machine learning classifiers
We used three classifiers: random forest, support vector machine,
and a neural network. They take in the protein sequence represen-
tation of the phage-host pair as an input, and predict whether the
phage-host pair interacts or not.

2.5.1 Random Forest. We trained a random forest classifier from
sklearn [29], and used grid search to tune hyperparameters such as
n_estimators to identify the best number of trees (the range was [25,
50, 100, 175, 250]), criterion to identify the best function to measure
the quality of split (the range was [gini, entropy, log_loss]), and
max_features to identify the best number of features to consider
when looking for the best split (the range was [sqrt, log2, None]).

2.5.2 Support Vector Machine (SVM). We trained an SVM clas-
sifier using sklearn [29], and used grid search to tune hyperparam-
eters such as kernel to identify the best kernel type to use (the
range was [linear, rbf, sigmoid, poly]), C to identify the strength
of the regularization (the range was [0.1, 1, 10, 50, 100]), gamma
to identify the best value for the kernel coefficient (the range was
[10, 5, 1, 0.1, 0.001], not applicable when kernel=linear), and degree
to identify the best value for the degree of the polynomial kernel
function (the range was [1,3,5], only applicable when kernel=poly).

2.5.3 Neural Network. Our neural network model accepts the
combined vector representation of both the phage and the host,
where the first half of the vector contains the representation of the
host proteome, while the other half contains the representation of
the phage proteome. The model consists of 3 fully connected hidden
layers. The first layer contains 128 nodes, followed by a layer with 32
nodes, and followed by a layer with 8 nodes. The activation function
used for the hidden layers is the Rectified Linear Unit (ReLU). The
last layer in the neural network is a softmax layer containing 2
nodes, where the argmax function is used between the 2 nodes
to predict whether an interaction between the phage-host pair is
positive or not. The model was built using Pytorch [28]. We used
the Adam function as our optimizer, with an initial learning rate
of 0.75, which is multiplied by 0.75 every 75 epochs, to smoothen
out the training loss as the number of epochs increases. We used a
batch size of 256.

2.6 Evaluation
We evaluated our models on our test set. The performance met-
rics used to evaluate our models are accuracy, precision, recall,
specificity, and F1 score.

Our data and codes are available at: https://github.com/
bioinfodlsu/phi-prediction

3 RESULTS AND DISCUSSION
3.1 Evaluation result
The result of evaluating different protein representations as input
to different machine learning classifiers is shown in Table 1. The
ROC curve, together with its AUC value is shown in Figure 3.

As can be observed from Table 1 and Figure 3, the different
protein representations provide similar results across different clas-
sifiers (except for the statistical profile), with each representation
outperforming the others in one kind of performance metric, but
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Table 1: Results of evaluating different protein representa-
tions as input to random forest, SVM, and neural network
classifiers, for predicting phage-host interaction.

Protein
representation

Metric Random
Forest

SVM Neural
Network

3-mer

Accuracy 0.596931 0.598546 0.653473
Precision 0.585960 0.592988 0.627346
Recall 0.660743 0.628433 0.756058
Specificity 0.533118 0.568659 0.550889
F1 Score 0.621109 0.610196 0.685714

Statistics
profile

Accuracy 0.492730 0.522617 0.423263
Precision 0.484642 0.525180 0.413793
Recall 0.229402 0.471729 0.368336
Specificity 0.756058 0.573506 0.478191
F1 Score 0.311404 0.497021 0.389744

ProtVec

Accuracy 0.590468 0.650242 0.627625
Precision 0.564815 0.606651 0.586623
Recall 0.788368 0.854604 0.864297
Specificity 0.392569 0.445880 0.390953
F1 Score 0.658125 0.709591 0.698890

Seq2Vec

Accuracy 0.596931 0.570275 0.608239
Precision 0.567114 0.573854 0.573465
Recall 0.819063 0.546042 0.844911
Specificity 0.374798 0.594507 0.371567
F1 Score 0.670192 0.559603 0.683214

ProtTrans
(ProtBFD
+ Prot5)

Accuracy 0.489499 0.533118 0.627625
Precision 0.341463 0.572438 0.589569
Recall 0.022617 0.261712 0.840065
Specificity 0.956381 0.804523 0.415186
F1 Score 0.042424 0.359202 0.692871

being outperformed in another. For example, as shown in Table 1,
3-mer as input to the neural network slightly outperforms pro-
tein embeddings as input to the neural network in terms of accu-
racy, but as shown in Figure 3c, some protein embeddings such
as ProtVec and ProtTrans slightly outperformed 3-mer in terms of
AUC. Protein embeddings acquired from protein language models
are shown to provide good results compared to the conventional
k-mer profile representation when compared to other tasks found
in bioinformatics such as predicting molecular function [34, 36].
However, protein embeddings do not necessarily improve classifier
performance compared to a more conventional 3-mer profile in our
phage-host interaction problem setting, possibly because protein
embeddings on other tasks where it performed well are used in-
dividually as an input, whereas in this study, protein embeddings
undergo averaging or mean-pooling due to the hosts and phages
having multiple proteins. This averaging of embeddings may lead to
the loss of information. Given our current results with the accuracy
peaking only at about 65% and similarly low values of precision
and recall, there is still room for improvement.

The statistical profile proposed by Li et al. [21] for their PredPHI
classifier does not provide good results when used as an input to our
classifiers as shown in Table 1 and Figure 3. A possible reason for
the statistical profile not providing good results is that calculating

(a) ROC Curves of different Protein representation as
an input to a random forest classifier

(b) ROC Curves of different Protein representation as
an input to a SVM classifier

(c) ROC Curves of different Protein representation as
an input to a Neural Network classifier

Figure 3: ROC Curves of different protein representation on
different classifiers.

the statistical values of protein-derived features over a large number
of protein sequences (such as the mean of amino acid ‘A’ frequency
overall protein sequences of a phage), might not provide predictive
signals for the machine learning models.
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Figure 4: Visualization of the effect of different protein rep-
resentation vector sizes in terms of the accuracy of classifiers
for predicting phage-host interaction. RF indicates Random
Forest, SVM indicates Support Vector Machine, NN indicates
Neural Network

3.2 Host-specific evaluation
Shown in Table 2 is the performance of the SVM classifier using
ProtVec protein embeddings as the input, for each type of host found
in the test set. ProtVec embeddings and SVM were selected in this
discussion since they achieved the highest accuracy when pairing
a protein embedding with a machine learning model as shown in
Table 1. For cases where a certain host only has a small number of
recorded phage-host pairs, Young et al. [37] disregarded the hosts
where the host does not have a minimum of 28 phages infecting
it. However, in our current problem formulation, our classifier can
still predict phages even for a host with a small number of recorded
phages that infect it such as Mycobacterium tuberculosis with only
14 samples.

3.3 Effects of protein representation vector sizes
As can be observed from Figure 4, the vector size of protein repre-
sentation does not correlate with the accuracy of the classifiers. For
instance, ProtVec embedding is one of the top-performing repre-
sentations even if it has the smallest vector size, outperforming the
ProtTrans embedding, the largest vector size embeddings tested in
this study, and even matching the performance of the 3-mer profile,
which is 80 times larger in vector size. This suggests that the vector
size does not directly affect the performance of the classifiers.

3.4 Future directions
Due to the large amount of proteins found on both the phage’s
proteome and the host’s proteome, performing averaging or mean-
pooling of protein representation for each proteome might lead to
loss of information. It would be interesting to filter the proteins

that are related to the adsorption process, such as receptor-binding
proteins of the phages or surface proteins of the hosts.

For filtering the phage’s receptor-binding proteins, there has
been previous work that filters the proteins based on the gene an-
notations [5, 12]. For cases where a gene does not have annotations,
there are tools available for annotation such as Prokka [32]. There’s
also a recent study by Boeckaerts et al. [6], which aims to predict
whether a protein is a receptor-binding protein or not, given the
protein sequence. The authors proposed two approaches: the first
one uses Hidden Markov Models that represent protein domains
strictly related to phage RBPs, and the other one generates protein
embeddings and uses them as input to a machine learning classifier.

For filtering the host’s surface proteins, to the best of our knowl-
edge, there are currently no studies that can directly identifywhether
a protein can be found on the bacterial surface or not. However,
there are studies that can identify the subcellular localization of a
given protein [1, 8, 16].

4 CONCLUSIONS
In this study, we defined the phage-host prediction problem as
taking the proteome of both the phage and the host as the input,
and decidingwhether the phage-host pair interacts or not.We tested
different protein representations and different classifiers. Protein
embeddings acquired from protein language models are shown
to provide good results compared to a more conventional feature
such as a k-mer profile for various tasks in bioinformatics [34, 36].
However, protein embeddings did not necessarily improve classifier
performance in our phage-host interaction problem setting. For
future directions, it would be interesting to filter the proteins that
are related to the adsorption process, such as receptor binding
proteins of the phages or surface proteins of the hosts.
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Table 2: Evaluation of SVM classifier using ProtVec protein embeddings as the input for some hosts found on our test set.

Host Name # of samples Accuracy Precision Recall Specificity F1 Score

Leptospira noguchii serovar 2 1.0000 1.0000 1.0000 1.0000 1.0000
Microcystis aeruginosa 2 0.5000 0.5000 1.0000 0.0000 0.6667
Synechococcus sp. 44 0.5227 0.4857 0.8500 0.2500 0.6182
Prochlorococcus 14 0.7857 0.7000 1.0000 0.5714 0.8235
Prochlorococcus marinus 8 1.0000 1.0000 1.0000 1.0000 1.0000
Bifidobacterium asteroides 4 0.7500 1.0000 0.5000 1.0000 0.6667
Corynebacterium glutamicum 6 0.6667 0.5000 1.0000 0.5000 0.6667
Propionibacterium freudenreichii 18 0.8333 0.8667 0.9286 0.5000 0.8966
Cutibacterium acnes 162 0.6667 0.6000 0.8961 0.4588 0.7187
Mycobacterium avium 2 0.5000 0.0000 0.0000 0.5000 0.0000
Mycolicibacterium phlei 6 0.6667 0.6667 0.6667 0.6667 0.6667
Mycolicibacterium smegmatis 200 0.6250 0.5870 0.8182 0.4356 0.6835
Mycobacterium tuberculosis 14 0.9286 0.9167 1.0000 0.6667 0.9565
Rhodococcus rhodochrous 2 0.5000 0.0000 0.0000 0.5000 0.0000
Rhodococcus erythropolis 24 0.6250 0.5714 1.0000 0.2500 0.7273
Streptomyces griseus 52 0.5577 0.5250 0.8400 0.2963 0.6462
Streptomyces hygroscopicus 2 0.5000 0.5000 1.0000 0.0000 0.6667
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