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ABSTRACT 

The Coronavirus Herd Immunity Optimizer (CHIO) is a 

relatively new nature-inspired algorithm that is inspired by the 

concept of herd immunity. The herd or population is said to be 

gradually affected by three different cases: the infected, 

susceptible, and immune cases. Improvements in the status of 

everyone in the herd is influenced by the algorithmic parameter, 

called the reproduction rate, or the rate at which a virus spreads. 

Performance of CHIO using benchmark optimization functions 

and comparison to well-known swarm-based algorithms have 

shown a good balance between exploration and exploitation. As 

CHIO is still in its infancy, this study attempted to use the 

original algorithm and its modified version to solve an NP-Hard 

problem, called the p-center problem. The modification was a 

simple addition of chaotic maps, tent and circle chaotic maps, to 

the original CHIO algorithm. Experimental and statistical results 

using household data sets from the Davao Region (Davao City, 

Tagum City and Digos City) showed that both CHIO and CHIO 

with chaotic maps can minimize the p-center problem with the 

former showing better results in most cases. Reproduction rate 

values were also varied, and results revealed that a higher basic 

reproductive of (BRr = 0.90) performed better than lower basic 

reproductive rate (BRr = 0.01).    
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1 Introduction 

Facility location decisions show a prominent role in strategic 

planning of many firms, companies, and governmental 

organizations [1] as it involves the optimal placement of services 

such as education, health, commerce and many more. Such type 

of decision fall under the p-center minimax location-allocation 

problem.  

The p-center problem is the location of facilities where the 

maximum distance between the nearest facility and its demand 

point is minimized [2]. Despite its simplicity and even in small-

scale, the p-center problem is considered an NP-Hard problem 

[3].  

 

The p-center in Euclidean space is in Equation 1: 

 

𝑚𝑖𝑛
(𝑥𝑖 , 𝑦𝑖)

𝑚𝑎𝑥
𝑖
 
𝑚𝑖𝑛
𝑗
 [(𝑎𝑖 − 𝑥𝑖)

2+ (𝑏𝑖 − 𝑦𝑖)
2] 

 

(1) 

 

where (𝑎𝑖 , 𝑏𝑖)  are the coordinates of the ith demand point and 

(𝑥𝑖 , 𝑦𝑖) are the coordinates of the ith facility. Deterministic and 

metaheuristic methods have been used in the past to solve the p-
center problem.  

 

The p-center problem was solved by Gaar and Sinnl [4] on a new 

integer programming formulation by means of branch-and-cut 

where cuts for customer demands points are iteratively 

generated. In the same study, they generated a way to use lower 

bound information to obtain stronger cuts which are at par with 

best known in literature. Computational studies with up to more 

than 700,000 customers and locations showed that, for many 

instances, the algorithm was competitive. Gaar and Sinnl [4] 

suggested hybridization techniques to alleviate time consuming 

calculations for some large-scale instances. Contardo, et al [5], 

on the other hand, solved the vertex p-center problem by 

proposing a row generation algorithm that iteratively solves 

smaller subproblems using subsets of the clients. Variable 

number of points are added in this subset at the end of each 

iteration. Computational experiments on up to 1 million clients 

and centers showed its scalability. Small values of p were solved 

to optimality whilst instances greater than 104 were solved faster 

than expected. Nematian and Sadati [6] introduced a p-center 

problem with demands treated as fuzzy random variables. The 
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problem was converted to a deterministic integer programming 

problem to be solved by new methods based on implementation 

of possibility theory and fuzzy random chance-constrained 

programming. Using the location of bicycle stations in Tabriz 

City, Iran, their method showed robustness and applicability to 

real cases with uncertainty. 

 

Anonymous [7] solved the Euclidean p-center problem using a 

nature-inspired optimization algorithm called the Stud Krill Herd 

Algorithm (SKHA). It was applied, for the first time, to the 

allocation of early warning devices (EWD) in Digos City, 

Philippines. Algorithmic parameters were tested and showed the 

capacity of SKH to find possible best locations of EWDs for p = 

5, 6 and 7.  Yin et al [8] used a greedy randomized solution and 

tabu search technique to solve the vertex p-center problem. The 

resulting solution is combined with one of the elite solutions by 

path-relinking, which consists in exploring trajectories that 

connect high-quality solutions. Their method showed 

competitive edge over state-of-the-art algorithms in literature 

both in solution quality and computational efficiency. 

Anonymous et al [9] also used the Moth-Flame Optimization 

Algorithm (MFOA) and Whale Optimization Algorithm (WOA), 

for the first time, on the Euclidean p-center problem. 

Experimental results using the Digos City, Philippines data 

alongside tests on algorithmic parameters showed the ability of 

both algorithms to find better locations for p=5, 6 and 7 as 

iterations progress. Between the two, MFOA generally showed 

better solution quality over WOA. 

 

In this study, a relatively new nature-inspired optimization 
algorithm called the Community Herd Immunity Optimizer 

(CHIO), attempts to solve the p-center problem, for the first time, 

using household data locations of Digos City, Davao City and 

Tagum City, Philippines. Furthermore, chaotic maps were 
introduced to determine how the algorithm behaves from the 

traditional randomized generation initial solution generation and 

fatality cases. This study aims to contribute to alternative 

approaches to the Euclidean p-center problem.  

2 Community Herd Immunity Optimizer 

 

Herd immunity is the indirect protection from an infectious 

disease that occurs when a population has established immunity 

to disease through vaccination or previous infection. CHIO is a 

relatively new nature-inspired optimization algorithm inspired 

by herd immunity developed by Al-Betar et al [10]. This 

algorithm aims to provide solution, 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) , to the 

minimization/maximization problem 𝑓(𝑥) , where 𝑛  is the total 

number of genes per individual. 

 

The seminal paper on CHIO compared the algorithm to seven 

well-known swarm-based algorithms [10]. Using 23 benchmarks 

functions. CHIO was able to obtain 16 out of 23 new results 

compared to the other methods. It was also used to solve real-

world engineering optimization problems and compared with 

nine other set of methods. CHIO was also proven to be generally 

competitive in these kinds of problems. It is important to note 

that CHIO had a variation called Multi-Objective CHIO, or 

MOCHIO [11], to optimize the design of a brushless direct 

current motor in the domain of magnetics. Results show that 

MOCHIO appears to be viable and dominant.  

 

The implementation procedure algorithm: 

1. Initialize algorithmic and control parameters to include 

the number of initial infected cases (𝐶0), maximum 

number of iterations (max _𝑖𝑡𝑒𝑟), population size or 

total number of cases/individuals (𝐻𝐼𝑆) and number 

of genes per individual, (𝑛), basic reproduction rate 
(𝐵𝑅𝑟) and maximum age of infected cases 
(max _𝑎𝑔𝑒). 

2. Generate the herd immunity population called 𝐻𝐼𝑃 

(Equation 2) of size 𝐻𝐼𝑃  with dimension 𝑛 . Each 

element in the matrix is generated randomly within the 
range of the lower bound and upper bound of the 

decision variables. Additionally, a one-dimensional 

status vector, 𝑆, of size 𝐻𝐼𝑆 is initiliazed to 0. The 𝑆 

vector later will contain the values 0 (susceptible case), 
1 (infected case) or 2 (immuned case). Another one-

dimensional vector, 𝐴,  of size 𝐻𝐼𝑆 , called the age 

vector is also initialized to zero. 

𝐻𝐼𝑃 =

[
 
 
 
𝑥1
1 𝑥2

1

𝑥1
2 𝑥2

2

⋯ 𝑥𝑛
1

⋯ 𝑥𝑛
2

⋮ ⋮
𝑥1
𝐻𝐼𝑆 𝑥2

𝐻𝐼𝑆
⋮ ⋮
⋯ 𝑥𝑛

𝐻𝐼𝑆]
 
 
 

 

 

 

(2) 

 

3. Evolve the population based on Equation 3. Depending 

on a generated random number, 𝑟, and the 𝐵𝑅𝑟, each 

individual will either be updated using Equations 4, 5, 

or 6. The indices 𝑐 , 𝑚  and 𝑣  are randomly chosen 

cases from the infected, susceptible and immune case, 

respectively. 

𝑥𝑖
𝑗(𝑡 + 1) =

{
 
 

 
 𝐶(𝑥𝑖

𝑗(𝑡))

𝑁(𝑥𝑖
𝑗(𝑡))

𝑟 ∈ [0, 1 3⁄ 𝐵𝑅𝑟)

𝑟 ∈ [1 3⁄ 𝐵𝑅𝑟, 2 3⁄ 𝐵𝑅𝑟)

𝑅(𝑥𝑖
𝑗(𝑡))

𝑥𝑖
𝑗(𝑡)

𝑟 ∈ [2 3⁄ 𝐵𝑅𝑟, 𝐵𝑅𝑟)

𝑟 ∈ [𝐵𝑅𝑟, 1)

 

 

 

(3) 

𝐶(𝑥𝑖
𝑗
(𝑡)) = 𝑥𝑖

𝑗(𝑡) + r × (𝑥𝑖
𝑗(𝑡)−𝑥𝑖

𝑐(𝑡)) (4) 

𝑁(𝑥𝑖
𝑗(𝑡)) = 𝑥𝑖

𝑗(𝑡) + r × (𝑥𝑖
𝑗(𝑡)−𝑥𝑖

𝑚(𝑡)) (5) 

𝑅(𝑥𝑖
𝑗(𝑡)) = 𝑥𝑖

𝑗(𝑡)+ r × (𝑥𝑖
𝑗(𝑡)−𝑥𝑖

𝑣(𝑡)) (6) 

 

4. Update the status and age vectors using Equation 7. 

The current solution will only be replaced by a new 

better solution (better immunity rate) else the age 

vector for this solution/case is incremented by 1.   
 

(𝑆𝑗,𝐴𝑗) = {
(1,1) 𝑖𝑓 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 8
(2,0) 𝑖𝑓 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 9

 (7) 

𝑓 (𝑥 𝑗(𝑡 + 1)) <
𝑓 (𝑥𝑗(𝑡 + 1))

∆𝑓(𝑥)
𝑎𝑛𝑑 𝑆𝑗 = 0 𝑎𝑛𝑑 𝑖𝑠_𝐶𝑜𝑟𝑜𝑛𝑎(𝑥

𝑗(𝑡 + 1)) 
(8) 

𝑓(𝑥𝑗(𝑡 + 1)) >
𝑓(𝑥𝑗(𝑡 + 1))

∆𝑓(𝑥)
 𝑎𝑛𝑑 𝑆𝑗 = 1 

(9) 

𝑖𝑠_𝐶𝑜𝑟𝑜𝑛𝑎(𝑥𝑗(𝑡 + 1))

= {
1 𝐼𝑓 𝑛𝑒𝑤 𝑐𝑎𝑠𝑒 𝑖𝑠 𝑖𝑛ℎ𝑒𝑟𝑖𝑡𝑒𝑑 𝑓𝑟𝑜𝑚 𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑 𝑐𝑎𝑠𝑒
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(10) 

 

 

5. Update fatality cases by regenerating a new random 

case if 𝐴𝑗 > 𝑚𝑎𝑥_𝑎𝑔𝑒 and 𝑆𝑗 = 1. The status and 

age values for this case is set to 0 and 1, respectively. 

6. The algorithm iterates steps 3 to 5 until max _𝑖𝑡𝑒𝑟 

iterations are reached. 
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For a more helpful understanding, these six primary steps are also 

represented as a flowchart using Figure 1.  

 

 
Figure 1: Flowchart of the Coronavirus Herd Immunity 

Optimizer (Lifted from Al-Betar et.al, 2020). 

3 Chaotic Maps 

Chaotic systems are rule-based systems with mathematically 

accessible input-output relationships. The output behaves 

randomly yet adhering to specific analytically grounded 

relationships. Its output is confined to two values making them 

suited for usage as a random factor to weaken particle movement 

paths and improve their exploring capabilities [12]. Studies in the 

past proved to show positive impact of using chaotic maps in 

optimization algorithms ([13],[14]). 

In this study, two types of chaotic maps that have improved 

previous studies will be presented and used.   

3.1 Tent Chaotic Map 

The Tent Chaotic Map is defined in Equation 11 where 𝑥𝑘 is a 

random value from 0 to 1 and 𝜇 is a value chosen between 0 to 

2. The values from this chaotic map ranges from 0 to 1 and tends 

to generate a tent-like shape of the graph.  

 

𝑥𝑘+1 = {
𝜇𝑥𝑘 𝑥𝑘 < 0.5

𝜇(1 − 𝑥𝑘) 𝑥𝑘 ≥ 0.5
 

(11) 

  

A study by Demidova and Gorchakov [14] comparing tent 

chaotic map to non-chaotic pseudorandom number generators 

showed that the former can yield more symmetrically and 

uniformly distributed real numbers. The tent chaotic map was 

used in place of the traditional pseudorandom number generators 

in implementing the Fish School Search Algorithm as tested on 

benchmark test functions. With the incorporation of exponential 

step into the algorithm, accuracy was improved and was proven 

to be more effective compared to Particle Swarm Optimization 

and Genetic Algorithms.  

3.2 Circle Chaotic Map 

The Circle chaotic map or the sine circle map, as seen in Equation 

12, is an iterated one-dimensional map [15]. The value 𝑥𝑘 is a 

random number between 0 and 1 and a and b are the external 

applied frequency and strenghth of nonlinearity, respectively. 

𝑥𝑘+1 = 𝑥𝑘 + b −
𝑎

2𝜋
𝑠𝑖𝑛(2𝜋𝑥𝑘)𝑚𝑜𝑑(1) 

(12) 

 

The same study by Demidova and Gorcothakov [14] showed that 

the circle chaotic map was competitive compared to other chaotic 

maps. It was, however, less superior than the tent chaotic map. 

  

With the potential of CHIO in solving optimization problems and 

the proven effectiveness of chaotic maps to improve existing 

algorithms, this study investigated using the classical CHIO 

(CPC) and CHIO with Chaotic Maps (CCMPC) to solve the p-

center problem. 

4 CPC and CCMPC for the p-center problem 

This study focuses mainly on, one, the performance of CHIO on 

p-center problems and, two, the effect of replacing the pseudo 

random number generators for the initial population generation 

and generation of fatality cases using tent and circle chaotic maps 

into CHIO. The classic CHIO will be labelled as CPC while any 

of the two CHIO with chaotic maps with be labelled as CCMPC. 

4.1 Test Data and Parameter Settings 

4.1.1 Datasets. The algorithms will be tested using datasets 

from the cities of Davao region in the Philippines. The Davao 

City dataset was obtained from the Phil-LIDAR2 project of the 

Anonymous (details omitted for double-blind reviewing) and has 

186,244 household data. The Digos City dataset was lifted from 

the Phil-LIDAR1 project of the same university with a total 

number of 23,882 household data. Lastly, the geotagged dataset 

of Tagum City that was obtained from the City Planning 

Development Office of Tagum City with 60,000 household data. 

 

In the interest of time and limited computing resources during 

the conduct of the study, the study utilized a sample of 30% of 

the total household data for each city. Thus, the number of 

household data used in the study for Davao, Digos, and Tagum 

datasets were 55876, 7165, and 18074, respectively. 

 

4.1.2 Parameter Settings. Presented in Table 1 are the 

parameter settings including the algorithmic parameters for 

CHIO, and the parameters used for the chaotic maps. 

Furthermore, two values of the basic reproduction rate parameter 

were also experimented on when dealing with slow (BRr = 0.01) 

and fast-spreading (BRr = 0.90) infections. All in all, there are 

18 different parameter configurations considering 3 data sets 

(Davao, Digos, and Tagum), algorithm versions (Classic Chio, 

Chio with Circle Chaotic Map and CHIO with Tent Chaotic 

Map) and basic reproductive rate (0.01 and 0.90). Each 
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parameter configuration is independently run 30 times to allow 

for statistical analysis. 

4.2 Experimental Results 

The goodness of the performance of CPC and CCMPC is 

initially gauged by the quality of the fitness values using 

Equation 1 (descriptive and inferential statistics), and then 

checks the algorithm performance based on CPU Time (time at 

which the algorithm first found the best solution) as a secondary 

criterion. 

 

Table 1. Experimental parameters.  

Parameter Value 

Basic reproduction rate (BRr) 0.01 and 0.90 

Maximum age for infected cases (max_age) 100 

Initial infected cases (C0) 1 

Maximum number of iteration (max_itr) 30000 

Total number of solution (HIS) 30 

Number of facilities/centers (n) 6 

μ   (Tent map) 

a   (Circle map) 

b   (Circle map) 

2 

0.5 

0.2 

  

4.2.1 Basic reproduction rate 0.01. Results for the different 

datasets and algorithms on using BRr = 0.01 are presented in this 

section. Statistical analyses were done on the fitness values, and 

results show that no significant difference was observed between 

the Classic CHIO (CC) and CHIO with Tent Chaotic map (CTC) 

for the Davao City dataset. Figure 2 (A and B) shows the 

convergence of the fitness values for these two algorithms as the 

iteration progresses.  There is a drastic decrease/improvement in 

the fitness values on its first 10000 iterations and has been 

gradually declining upon further iterations. It is also important to 

note that improvements are still visible from iteration 25,000 

onwards, where a possible decrease in the fitness value may still 

be achieved if iterations are to be increased. 

 

Table 2 also shows the descriptive statistics associated with this 

experiment as well as the time at which the best fitness value was 

first observed (CPU time). Classic CHIO obtained the most 

desirable solution terms of best, worst, mean fitness values and 

CPU time. CHIO with Circle Map, however, generated very 

similar (stable) fitness values as shown by the lowest standard 

deviation value. 

 

Graphs of the best performing algorithms in each dataset, 

showing the initial and final position of the centers were overlaid 

on Google earth. The radius of the circles indicates the fitness 

value of the solution generated. Final locations tend to be closer 

to the actual households of the city and are more within the 

boundary of the region shows a more desirable result. Figure 2 

(A and B) shows that the radii of the red circles are smaller than 

the green circles, indicating improvement on the solutions 

generated by the algorithm as it progresses. 

 

Statistical analysis for the different algorithms on the Digos City 

dataset showed that Classic CHIO was significantly better than 

the two CCMPCs while Classic CHIO and CHIO with Circle 

chaotic map were not significantly different from each other 

when tested on the Tagum City dataset. 

Table 2. Best, worst, mean, and standard deviation for Davao 

City dataset using BRr=0.01 in meters. 
 Classic 

CHIO 

CHIO 

w/ Tent 

CHIO 

w/ Circle 

Best Fitness 

[BF] 

8426.3650 8949.5450 8790.3260 

Worst Fitness 

[WF] 

12941.3500   14457.9340 13728.8590 

Mean Fitness 

[MF]  

9429.0290 9695.9080 9911.0030 

Standard 

Deviation 

[SD] 

516.7280 492.1120 424.5360 

Mean CPU 

Time [MCT] 

(s) 

116406.0644 117120.9388 124436.3418 

Value/s in bold character indicates the best value among the setup. 

Tables 3 and 4 show the descriptive statistics of the different 

algorithms for Digos City and Tagum City, respectively. For the 

Digos City dataset, the Classic CHIO obtained the most desirable 

solution in terms of best, worst, and mean fitness values. CHIO 

with Tent Chaotic Map, however, generated very stable fitness 

values as well as faster CPU time. For the Tagum City dataset, 

on the other hand, the Classic CHIO was able to find the best 

fitness value and best mean fitness value. CHIO with Circle 

Chaotic Map was the most stable as shown by the least standard 

deviation and the quickest to finish among the three. 

Table 3. Best, worst, mean, and standard deviation for Digos City 

dataset using BRr=0.01 in meters. 
 Classic 

CHIO 

CHIO 

w/ Tent 

CHIO 

w/ Circle 

BF 2051.7720 2299.6306 2370.4583 

WF 3393.7780 3921.0970 5092.3250 

MF 2451.7308 2601.8463 2660.9530 

SD 151.7184 137.1814 153.01201 

MCT 15498.9406 13063.4300 16704.6842 

Value/s in bold character indicates the best value among the setup. 

Table 4. Best, worst, mean, and standard deviation for Tagum 
City dataset using BRr=0.01 in meters. 

 Classic 

CHIO 

CHIO 

w/ Tent 

CHIO 

w/ Circle 

BF 5007.1218 5166.2807 5142.2310 

WF 7586.5770 8169.4670 9426.3870 

MF 5619.5590 5793.7950 5757.1058 

SD 220.5652     273.1929     259.5690     

MCT 36112.5090 38435.4468 33713.8444 

Value/s in bold character indicates the best value among the setup. 

Shown in Figure 2 (C) and Figure 2 (D and E) are the 

convergence graph and the initial and final positions for the best 

performing algorithms for Digos and Tagum datasets. 

Convergence behavior of the fitness values for the different 

algorithms as iterations progressed for Digos and Tagum City 

dataset were similar to that of the Davao City these graphs. It 

emphasizes that the algorithm can improve solutions even with a 

different basic reproduction rate, and improvements were evident 

by a tighter (smaller) radius of p-centers at the end of the 

iteration. 
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(A)            (B)                  (C)       (D)              (E) 

                            (Davao City)                                           (Davao City)                                                (Digos City)                                           (Tagum City)                                                (Tagum City) 

 

 

          

                                    
   (F)                (G)                    (H)         (I)            (J) 

                                 (Davao City)                                               (Davao City)                                                    (Digos City)                                             (Tagum City)                                                (Tagum City) 

 

 

Figure 2: Convergence Graph(top) and Initial [green] and Final [red] (bottom) locations of the best solution/s using BRr = 0.01 (A through E) and BRr = 0.90 (F through J).  
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4.2.2 Basic reproduction rate 0.90. Results for the different 

datasets and algorithms on using BRr = 0.90 are presented in this 

section. It is worth noting that the best algorithms for a particular 

dataset and behaviour of convergence maps for this BRr had the 

exact similar results as with BRr = 0.01. The descriptive statistics 

resulting from BRr = 0.90, however, were different from that of 

BRr=0.01. 

 

Tables 5, 6 and 7 show the descriptive statistics of the different 

algorithms for Davao City, Digos City and Tagum City, 

respectively. For the Davao City dataset, Classic CHIO acquired 

the most desirable value for the best and mean fitness, while 

CHIO with Tent Chaotic Map has the lowest worst fitness value. 

CHIO with Circle Chaotic Map, however, has least deviated 

fitness and the fastest to converge to the best solution. For the 

Digos City dataset, Classic CHIO obtained the most appealing 

results for the best, worst, and mean fitness values, as well as the 

most stable fitness as depicted from it having the lowest standard 

deviation among the three. All while, CHIO with Circle Chaotic 

Map is the quickest to arrive with the best solution. Lastly, for 

the Tagum City dataset, the best fitness value among the 

algorithms was acquired by CHIO with Tent Chaotic Map as well 

as the quickest to arrive at the best solution. While Classic CHIO 

has the best result for the values of the worst and mean fitness. 

CHIO with Circle Chaotic Map, however, is the most stable 

having the least deviated fitness values among the algorithms. 

 

Statistical analysis for the different algorithms using BRr=0.90 

for the different datasets produced similar results as that of the 

BRr=0.01. That is, Classic CHIO and CHIO with Tent Chaotic 

Map for the Davao City dataset; Classic CHIO for the Digos City 

dataset and Classic CHIO and CHIO with Circle Chaotic Map 

for the Tagum City dataset.  

 

Plots of the solutions of the best performing algorithms for each 

dataset and its corresponding graphs are presented in Figure 2 (F 

through J). Convergence graphs for all these figures showed 

similar in behaviour as observed with BRr=0.01 where clear 

decrease in convergence trend can be observed. Plots of the p-

centers also show improvement with the final (red) locations 

having tighter radii than the initial (green) locations. Again, it is 

to note that some final locations were in a body of water as seen 

in Figure 2 (F through J). 

 

Table 5. Best, worst, mean, and standard deviation for Davao 

City dataset using BRr=0.90. 
 Classic 

CHIO 

CHIO 

w/ Tent 

CHIO 

w/ Circle 

BF 8242.3331 8676.8444 8690.9238 

WF 9893.9472 9734.0202 9893.1809 

MF 9125.2997 9291.7594 9406.9496 

SD 412.7521 292.3905 291.1344 

MCT 129340.2153 117904.6340 93334.1110 

Value/s in bold character indicates the best value among the setup. 

 

Table 6. Best, worst, mean, and standard deviation for Digos City 

dataset using BRr=0.90. 
 Classic 

CHIO 

CHIO 

w/ Tent 

CHIO 

w/ Circle 

BF 2096.2230 2153.8885 2252.4427 

WF 3359.3790 3925.4880 5092.3180 

MF 2373.0290 2541.3992 2586.2832 

SD 123.0010 178.1307 152.7004 

MCT 15309.2362 12273.7748 11485.1806 
Value/s in bold character indicates the best value among the setup. 

Table 7. Best, worst, mean, and standard deviation for Tagum 

City dataset using BRr=0.01. 
 Classic 

CHIO 

CHIO 

w/ Tent 

CHIO 

w/ Circle 

BF 4853.6119 4811.3694 5170.6444 

WF 7524.0990 8061.8010 9426.3880 

MF 5460.7795 5645.6838 5540.4572 

SD 247.0989 264.1345 199.0190 

MCT 37433.6903 30490.1096 32811.7169 
Value/s in bold character indicates the best value among the setup. 

4.2.3 BRr 0.01 vs BRr 0.90.  For better understanding of the 

comparisons on this section of the results, nine experimental 

setups were defined. Classic CHIO algorithm was used for the 

setups S1, S2, and S3, using Davao, and Tagum City datasets, 

respectively. Additionally, CHIO with Tent Chaotic Map, and 

with Circle Chaotic Map, were used for S4 through S6, and S7 

through S9, respectively using the same dataset order as classic 

CHIO. 

 

Corresponding best fitness values were recorded for each of the 

experimental setup and is presented using Table 9 for the 

different basic reproduction rates. It can be observed that 7 of the 

9 setups performed better when the basic reproduction rate is 

0.90. 

 

Table 10 shows the summary of the statistical result using the 

best fitness values for all the algorithms. At a significance level 

of 0.05, 8 of the 9 setups have enough reason to believe that there 

is a significant difference between the two basic reproduction 

rates in terms of fitness value.  

 

Table 9. Best fitness values and Mean Ranks using basic 

reproduction rates 0.01 and 0.90. 

Setup 
Fitness Value Mean Rank 

BRr = 0.01 BRr = 0.90 BRr = 0.01 BRr = 0.90 

S1 8426.3654 8242.3331 28.5000 32.5000 

S2 2051.7720 2096.2250 31.1000 29.9000 

S3 5007.0532 4853.6119 29.7300 31.2700 

S4 8949.5453 8676.8444 31.8300 29.1700 

S5 2299.6306 2153.8885 30.8300 29.1400 

S6 5166.2807 4811.3694 35.7700 25.2300 

S7 8790.3264 8690.9238 36.7000 24.3000 

S8 2370.4583 2252.4427 37.9300 23.0700 

S9 5142.2311 5170.6444 30.8000 30.2000 

Value/s in bold character indicates better value for fitness and mean rank comparing 

two basic reproduction rates. 
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Table 10. Mann-Whitney U-test result using at alpha = 0.05. 

Setup (0.01 vs 0.90) p-value 

S1 0.018737 

S2 0.011710 

S3 0.018005 

S4 0.001030 

S5 0.074779 

S6 0.000604 

S7 0.000604 

S8 0.000604 

S9 0.000604 

Value/s in bold character indicates significant difference. 

 

Furthermore, the mean ranks of each comparison are also 

recorded and are also presented in Table 9. It can be observed 

that best fitness values using the basic reproduction rate value 

0.90 performs better compared to basic reproduction rate value 

0.01.  

 

Based on the descriptive and inferential statistical evidence, 

using basic reproduction rate value of 0.90 provides better 

results. A lager basic reproduction rate (BRr) means that the 

generated solutions underwent frequent changes (refer to 

Equation 3), providing a larger solution space to explore.  

5 Conclusion 

CHIO showed a good balance between exploration and 

exploitation as concluded by Al-Betar et.al. With this and the 

algorithm being new, it presented itself as a good area for 

research to further explore its capabilities, hence, being used in 

this study to solve the p-center problem. 

 

When tested, Classic CHIO resulted in improvement on the 

fitness values of the solution generated, indicating that the 

population has been acquiring herd immunity. This means the 

effectiveness of CHIO in solving the p-center problem.  

 

Overall, any of the algorithms (CPC and CCMPC) are effective 

for all tested datasets. From which can be concluded from the 

statistical results on Davao and Tagum City showing no 

significant difference between algorithms. However, CPC 

emerged to be one if not the lone best performing algorithm for 

all three datasets on all BRr experimental values.  

 

The value of the BRr also affects how the algorithms search the 

solution space. The larger BRr, in this case 0.90, the better 

algorithm performs compared to 0.01 with respect to the best 

fitness. The increased rate of exploring the solution space could 

have affected the results. 

 

Further investigation on parameters used, and feasibility of the 

location of the centers still calls for improvement. The resulting 

location of the centers can also be subjected to land use land 

cover of each city to determine viability of putting up centers in 

those areas. This can also include elevation, nearness to highway, 

among others. The authors are also currently investigating the 

algorithm using full household data set used in this study.  

 

The extent of the capabilities of this algorithm are still to be 

tested and can also be used to solve other optimization problems. 

However, the methodology used in this study can already aid 

local government units in finding best initial locations for 

services such as emergency centers, early warning devices, fire 

stations, bicycle stations, and others. 

 

Nevertheless, CHIO was found to be very capable and can be 

considered as an alternative to state-of-the-art methods in solving 

the p-center problem. 
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