Evaluating ChatGPT for Joint Intent Detection and Slot Filling:
Zero-Shot vs. Few-Shot Prompting

Hannah Fong
De La Salle University
Manila, Philippines
hannah_regine_fong@dlsu.edu.ph

ABSTRACT

Natural language understanding transforms an unstructured text
into a structured semantic representation through intent detection
(ID) and slot filling (SF). Research shows that jointly performing the
two tasks results in better performance due to the interdependencies
between intent classes and slot labels. The current state-of-the-art
joint ID and SF models are based on the pre-trained language model
BERT. This raises the question of how large-scale pre-trained lan-
guage models (LLMs) would perform on the joint task. LLMs are
reported to achieve competitive performance in zero-shot prompt-
ing, and better in few-shot prompting. In this paper, we report our
evaluation of ChatGPT’s performance on the joint ID and SF task
under zero-shot and different few-shot (i.e., 1-shot, 5-shot, 10-shot,
20-shot, 30-shot) prompt settings. Results showed that ChatGPT’s
performance generally improves when given more examples in
the prompt. However, its performance lags behind other LLMs and
SOTA joint models. It also has the tendency to exhibit unexpected
behaviors such as generating unknown outputs, outputting incor-
rect number of slot labels, and annotating a different utterance from
what was provided. These unexpected behaviors were observed
more frequently when sending longer prompts, demonstrating the
effect of prompt length to ChatGPT’s performance.

KEYWORDS

joint intent detection and slot filling, large language models, Chat-
GPT, zero-shot prompting, few-shot prompting

1 INTRODUCTION

Natural language understanding (NLU) is the key component in a
conversational agent architecture that transforms an unstructured
input in human language into a structured semantic representation
that can be processed by a machine [14]. It performs two important
tasks: intent detection and slot filling [31]. Intent detection (ID)
is a classification task that maps an utterance to a finite set of
intent classes that signifies the intention or goal of that particular
utterance. Slot filling (SF) is a sequence labeling task that attaches
labels to the sequence of tokens in an utterance. Traditionally, these
two tasks were treated independently and performed sequentially.
However, it was discovered that the intent class and slot labels of
an utterance have interdependencies that, when modelled together,
can result in better performance [31]. This led research work that
investigates the creation of joint ID and SF models to perform the
two tasks simultaneously, leading to better performance compared
to the traditional independent models.

The earliest approach to joint ID and SF models utilized statisti-
cal methods such as conditional random fields and hidden Markov
models [2, 11]. These models outperformed the independent ID and

Ethel Ong
De La Salle University
Manila, Philippines
ethel.ong@dlsu.edu.ph

SF models. With the emergence of deep learning, neural network
architectures, such as convolutional neural networks (CNN) and
recurrent neural networks (RNN), were applied to solve the joint
task [15, 32]. In 2017, the transformer neural network architec-
ture was introduced and became the building block of large-scale
language models that can understand and generate human lan-
guage [16, 28]. Bidirectional Encoder Representations from Trans-
formers (BERT) is a transformer-based language model that pro-
duced state-of-the-art (SOTA) results in various natural language
processing (NLP) tasks upon its release [6]. This prompted the im-
plementation of BERT-based joint ID and SF models which currently
exhibit SOTA performance on the joint task [27].

Recently, ChatGPT which is a conversational LLM fine-tuned
from the generative pre-trained transformer (GPT) 3.5, has shown
strong performance on various NLP tasks [25], including zero-shot
performance on the joint ID and SF task [21]. A detailed analysis of
the results revealed that ChatGPT performs relatively well in ID but
poorly in SF. The authors experimented with adding slot descrip-
tions and examples in the prompts and found these to improve the
performance of ChatGPT in the SF task for the benchmark SNIPS
NLU dataset [5]. However, the details of the experiment, such as
the number of examples provided, were not documented.

In this paper, we report our systematic evaluation of ChatGPT’s
performance on the joint ID and SF task across zero-shot and differ-
ent few-shot prompt settings for the Airline Travel Information Sys-
tem (ATIS) dataset, which is another widely used NLU benchmark
dataset [21]. Results showed that ChatGPT’s performance generally
improves when given more examples in the prompt. However, its
performance lags behind other LLMs and SOTA joint models. It
also has a tendency to exhibit unexpected behaviors such as gener-
ating unknown outputs, outputting incorrect number of slot labels,
and annotating a different utterance from what was provided. Our
methodology and findings can serve as a reference for future works
that intend to evaluate ChatGPT’s performance on NLU tasks with
varying prompt settings.

2 RELATED WORKS

In this section, we provide a review of early works and recent
approaches in joint intent detection and slot filling, including the
use of large language models.

2.1 Early Approaches in Joint ID and SF

The earliest work on the joint ID and SF task devised triangular-
chain conditional random fields (TriCRFs) that jointly represent the
ID and SF in a single graphical model, thereby naturally capturing
the relationship between intent classes and slot labels [11]. Their
proposed approach achieved higher F1-scores for both ID and SF

PCSC2024, May 2024, Laguna, Philippines

over independent, cascaded, and reranked approaches. However,
this approach requires a large amount of labeled training data,
which is expensive to obtain [30]. Wang [30] showed that limited
training data degrades the joint model’s ID performance.

To address the problem of scarce labeled training data, Celiky-
ilmaz and Hakkani-Tur [2] proposed leveraging both labeled and
unlabeled data to jointly learn the intent classes and slot labels of
utterances. Their approach is a semi-supervised generative multi-
layer context model where an utterance is represented using hidden
Markov models. Prior knowledge extracted from unlabeled web
search queries are utilized to enhance the semantic component
extraction from utterances. With this, a higher ID accuracy com-
pared to the cascaded and TriCRFs approaches is achieved when
the amount of labeled training data is small (i.e., 25% of the train-
ing data). However, it underperformed in SF, measured using the
F1-score, compared to the two baseline approaches.

2.2 Deep Learning Models for Joint ID and SF

The emergence of deep learning prompted Xu and Sarikaya [32] to
apply the neural network architecture in performing the joint task.
They proposed a CNN-based TriCRFs model where features are
automatically extracted from the utterances by the convolutional
layers that are shared between the two tasks. The intent and slot
dependencies are jointly modeled using TriCRFs. The proposed
model outperformed the independent and TriCRFs approaches by
achieving a lower ID error rate and higher SF F1-score.

The strong sequence modeling performance of RNNs prompted
Liu and Lane [15] to use it for the joint ID and SF task in an encoder-
decoder architecture. A bidirectional RNN encoder is shared by two
unidirectional RNN decoders for ID and SF, respectively. Both RNNs
use the Long Short-Term Memory (LSTM) cell as the basic RNN unit
to model long-term dependencies. The proposed model achieved
lower ID error rate and higher SF F1-score compared to the previous
joint models (i.e., TriCRFs and CNN TriCRFs).

The deep learning-based models demonstrated strong perfor-
mance on the joint ID and SF task. However, these require a vast
amount of labeled training data which are time-consuming and
costly to obtain [27]. The scarcity of labeled data diminishes the
generalizability of these models. As an alternative, language models
pre-trained on a large corpora of unlabeled text were developed
to learn the linguistic patterns of a language [16]. Transformers
are used for their efficient parallel processing capability [29]. One
example is BERT, which has achieved SOTA performance in many
NLP tasks. Shafi and Chachoo [27] investigated how BERT can
improve the generalizability of the joint ID and SF model. They
proposed a multi-stage framework trained on BERT with a bidirec-
tional gated recurrent unit and self-attention mechanism as the ID
decoder and a capsule network as the SF decoder. Their proposed
model achieved a higher F1-score for both ID and SF compared to
existing SOTA approaches.

2.3 Large Language Models for Joint ID and SF

The transformer architecture, increased computational power, and
availability of vast datasets paved the way for large-scale language
models (LLM) [16]. LLMs are pre-trained with billions of model pa-
rameters and terabytes of data. Through their massive scale, LLMs

Anonymous under Review, et al.

acquire emergent abilities that enable them to perform well in a
variety of NLP tasks, including arithmetic reasoning, logical rea-
soning, and question answering without being specifically trained
in these domains [3, 16].

ChatGPT is a conversational LLM fine-tuned from GPT 3.5 with
reinforcement learning from human feedback to generate human-
like responses to prompts [25]. With its demonstration of promising
performance in different NLP tasks, research interests in evaluating
the model’s performance in ID and SF tasks began to surface. Pan et
al. [21] conducted a preliminary study to evaluate ChatGPT’s zero-
shot performance on the joint ID and SF task. However, analysis of
their experiments revealed that one-shot prompting may have been
used instead based on the prompt template wherein one example
input-output pair was included to specify the output format. Results
showed that ChatGPT reached good ID accuracy but not at par with
other LLMs (i.e., GPT-3.5 text-davinci-003 version and Codex) and
the fine-tuned SOTA model (i.e., Co-Interactive Transformer). It
exhibited the lowest F1-score in SF compared to the other models.
The study also experimented with adding slot descriptions and
examples to the prompt which increased the SF performance. This
experiment was performed for the SNIPS NLU dataset [5].

3 TASK DESCRIPTION

In this section, we define the joint intent detection and slot filling
task. We also describe the ATIS dataset which was used in the
experiment. Prompt engineering is an important component in
instructing ChatGPT to perform the joint ID and SF task; we briefly
explain this component in relation to our requirements.

3.1 Joint Task

Intent detection is the task of identifying the main goal of a user
utterance [7]. It classifies a given utterance x into one of the pre-
defined intent classes 4’ based on the feature/s extracted from the
utterance. Slot filling is the task of assigning semantic labels to
the words in a given utterance. Given an input word sequence
x = (x1, ..., xN7), slot filling assigns each word a slot label y° =
(y3, - ypy) from a predefined list of slot labels. As a joint task,
the relationship between the intent class and slot labels in a given
utterance is modeled and used to inform the ID and SF tasks.

3.2 Dataset

The Airline Travel Information Systems (ATIS) dataset [21] is a
standardized dataset widely used for the joint ID and SF task. It
consists of 5,871 utterances in the air travel domain [10, 22]. The
dataset can be divided into 4,978 utterances for the training set and
893 utterances for the test set. It has 21 unique intent classes such
as airfare, flight, and ground service. It has 120 slot labels that can
be categorized into airline, airport, arrival date, departure date, city
name, and flight.

ATIS contains single-turn utterances associated with a single
intent in a single domain (i.e., air travel). Table 1 shows one train-
ing sample for a given utterance: “i want to fly from baltimore to
dallas round trip”. It has a single intent, identified as "atis_flight".
The slot labels follow the IOB tagging format where the “B” pre-
fix indicates the beginning of a slot, while the “I” prefix indicates

Evaluating ChatGPT for Joint Intent Detection and Slot Filling: Zero-Shot vs. Few-Shot Prompting

the word inside or at the end of a slot [8]. The “O” label indi-
cates that a word does not correspond to any of the predefined
slot labels. In the given example, the word “baltimore” is labeled
as "B-fromloc.city_name" to indicate the source city, while the
word “dallas” is labeled as “B-toloc.city_name” to indicate the
destination city. The word “round” is labeled as “B-round_trip” as
it is the first part of the compound word "round trip" while “trip”
is labeled as “I-round_trip” because it is part of the previous slot
label. The other words in the given utterance are labeled as “O”
because they do not signify any of the predefined slot labels.

3.3 Prompt Engineering

Prompts are used to guide an LLM in generating a response or per-
forming a task [3]. Prompt engineering is the process of designing
and optimizing prompts to obtain the desired output or response [3].
To instruct ChatGPT to perform the joint ID and SF task, we utilized
zero-shot and few-shot prompting. In zero-shot prompting, an LLM
must answer a question it was not trained on without being given
any examples. Conversely, in few-shot prompting, examples are
included in the prompt to guide the LLM in generating the desired
response.

To automatically send queries to and receive responses from
ChatGPT, we used the Chat Completions endpoint provided by
OpenAl API [17]. The original prompt given to ChatGPT is shown
in Table 2. The general structure of the prompt is patterned after
the prompt formulated by Pan et al. [21] which consists of three
(3) sections: intent class constraints, slot label constraints, and
regulations. A persona or role (""You are a joint intent detection and
slot filling model.") and a brief task description ("You need to identify
the intent and slot labels of a given sentence.") were appended at the
start of the prompt as prescribed by OpenAlI [18]. The list of intent
classes and slot labels, as provided in the ISEAR dataset, is shown
in Table 2; the list is redacted for brevity.

There are five (5) regulations specified in the prompt. The first
and second regulations inform ChatGPT to generate the correct
number of outputs. For ID, only one intent class is provided as each
utterance in the ATIS dataset only has a single intent. For SF, every
word in a sentence must be given a slot label using IOB tagging.
The third and fourth regulations restrict ChatGPT’s responses to
the predefined list of intent classes and slot labels provided in the
ATIS dataset. The fifth regulation instructs ChatGPT to generate the
output in JSON format for easier parsing of responses. An output
template is also provided for clarity.

4 METHOD

The performance of ChatGPT on the joint ID and SF task was
evaluated under zero-shot and few-shot prompt settings using the
ATIS dataset. For the few-shot prompting, five (5) experiments were
conducted to insert five (5) different numbers of examples (i.e., 1, 5,
10, 20, 30) to see how these affect ChatGPT’s performance on the
joint ID and SF task.

4.1 Dataset

Of the 4,978 utterances in the training set of ATIS, only the first
30 utterances were used as examples in the few-shot prompting
experiment. The entire test set (i.e., 893 utterances) was used to

PCSC2024, May 2024, Laguna, Philippines

evaluate the performance of ChatGPT in the joint task. ChatGPT
was instructed to only choose from the 21 intent classes and 120 slot
labels provided in the ATIS dataset for intent classification and slot
filling, respectively. The utterances, intent classes, and slot labels
from the ATIS dataset were used as is in the experiments.

4.2 Experiments

We performed the experiments using zero-shot prompting and few-
shot prompting by inserting five (5) different numbers of examples
(e, 1,5, 10, 20, 30). Prompts are sent through the messages param-
eter of the OpenAI API call which takes an array of messages, each
represented as a JSON object with two keys: role and content [19].
An example of a message JSON object is {"role": "system", "content":
"You are a helpful assistant."}. The system role sets the behavior of

" on

ChatGPT as a helpful assistant. Another example is {"role": "user”,
"content": "Who won the world series in 2020?"}. In this example, the
user role signifies that the prompt is sent by the user, which must
be responded to by ChatGPT.

The Chat Completions endpoint was used to process the entire
test set of the ATIS dataset by ChatGPT. The model employed was
gpt-3.5-turbo-1106 as it was the latest free model that supported
the JSON mode [20]. The first message in the API call is a system
message where the prompt as described in Table 2 was specified.
For few-shot prompting, additional system messages were sent,
named "example_user” and “example_assistant”. These system
messages serve as “faked example messages” and are used to demon-
strate the desired output to ChatGPT; thus, these messages are not
part of a real conversation [26]. The final message in the API call is
a user message that specifies the actual utterance to be annotated by
ChatGPT. The response_format parameter was used to constrain the
model’s output to a JSON object. Only one utterance is processed
by ChatGPT per API call.

We then validated the output of ChatGPT for the six (6) prompt
settings by checking that each utterance has been annotated with
the correct number of intent classes and slot labels. To resolve any
resulting inconsistencies, the prompts were rerun and modified if
necessary. These are further discussed in Section 4.3.

4.3 Performance Evaluation

The performance of ChatGPT was evaluated using ID accuracy
and SF F1-score. Specifically, the span-based micro-averaged F1-
score was calculated for SF because it is the standard metric re-
ported in literature [31]. A span includes all words with the same
class of a slot label, regardless of their prefix. For example, the
labels B-airline_name and I-airline_name comprise a span of
class airline_name. The results were compared to the co-interactive
transformer by Qin et al. [24]), a SOTA model. The zero-shot per-
formance was benchmarked against other experiments with LLMs,
i.e., ChatGPT and Codex [21]. However, the SF metric is changed to
token-based macro-averaged F1-score as this was the metric used
by Pan et al. [21].

5 RESULTS AND FINDINGS

In this section, we present the performance evaluation results of
ChatGPT across various prompt settings and when compared with

PCSC2024, May 2024, Laguna, Philippines

Anonymous under Review, et al.

Table 1: ATIS Dataset Sample with Intent and Slot Annotation (IOB format)

Utterance i want | to fly | from | baltimore to dallas round trip
Slot Label | O (0] 0] (¢} 0] B-fromloc.city_name | O B-toloc.city_name | B-round_trip I-round_trip
Intent Class atis_flight
Table 2: Prompt for Joint ID and SF
Section Prompt
Task Description You are a joint intent detection and slot filling model. You need to identify the intent and slot labels of a

Intent Class Constraints

Slot Label Constraints

Regulations

given sentence. The sentence you need to annotate will be given in the next prompt after this.
First, choose the intent of the sentence from the following intent list: [atis_abbreviation, atis_aircraft, ...]

Next, annotate the sentence with slots from the following slot label list in IOB tagging: [B-aircraft_code,
B-airline_code, ...]

Strictly follow the regulations below:
1. Give only one intent for the sentence.
2. Give the slot label of every word in the sentence based on IOB tagging.

3. Intents must only come from the provided intent list.
4. Slot labels must only come from the provided slot label list.
5. You need to output the intent and slot labels in JSON format:

{"intent": "<insert chosen intent>",
chosen slot label>"}] }

slots": [{"word": "<insert word in the sentence>", "slot_label": "<insert

6. The number of slots should be equivalent to the number of words in the sentence.

other LLMs and SOTA models. We also share our findings on mis-
classified intents and slot labels from analyzing the output gener-
ated by ChatGPT.

5.1 Zero-shot v.s. Few-shot Performance

The performance of ChatGPT across the six (6) prompt settings
is presented in Table 3. It can be observed that ID accuracy and
span-based micro-averaged SF F1-score generally increase as the
number of examples provided to ChatGPT increases, with the 30-
prompt setting achieving an ID accuracy of 87.46% and SF F1-score
of 89.13%. This indicates that providing more context or examples
to ChatGPT can improve its ability to produce the desired output.

However, 1-shot prompting is an exception, obtaining the lowest
accuracy score for ID. Similar behavior was observed in the work
of Zhong et al. [33] where ChatGPT did not perform well under
1-shot prompting for other NLU tasks. This illustrates the risk of
providing only one example to ChatGPT as it may serve as noise
that could skew its performance.

It is worth noting that ChatGPT had the steepest increase in SF
F1-score under 1-shot prompting. This may be attributed to the
multiple slot-value pairs that were given to ChatGPT. In multiple
slot-value pairs, each word in an utterance has an associated slot
label which provided more context that may have aided ChatGPT in
performing the SF task, and thus, the increased performance. It can
also be observed that score improvements become gradual upon
reaching a certain point (i.e., 10-shot prompting). The SF F1-score
of the 20-shot prompting is slightly lower than that of the 10-shot
prompting. This may be attributed to the increased length of the
prompt, as reported in the study of He et al. [9].

5.2 Comparison with Other Models

The zero-shot performance of ChatGPT was compared with the
results reported by Pan et al. [21] using ID accuracy and token-
based macro-averaged SF F1-score as seen in Table 4. The evaluation
metric used for SF was changed to token-based macro-averaged
F1-score as this was the metric used by Pan et al. [21]. This means
that the slot F1-score was computed as the mean of the individual
F1-scores per token-level slot label, where slot label classes with
different prefixes are treated as distinct slot labels.

As can be seen in the table, ChatGPT’s performance using the
model version released in January 2024 is better compared to its
version released in 2023. However, it performed worse compared to
Codex, a 12B parameter GPT model fine-tuned on publicly available
code from GitHub [4]. Our work was compared to Codex for a more
direct comparison with the results reported by Pan et al. who also
evaluated Codex [21].

Table 3: ChatGPT’s Performance in Joint ID and SF

Prompt Setting ID Accuracy (%) SF F1-Score (%)
0-shot 76.15 80.07
1-shot 69.09 83.17
5-shot 71.44 85.68
10-shot 83.20 87.20
20-shot 86.45 86.99
30-shot 87.46 89.13

Evaluating ChatGPT for Joint Intent Detection and Slot Filling: Zero-Shot vs. Few-Shot Prompting

Table 4: Zero-shot Performance Comparison of ChatGPT
with Other LLMs

PCSC2024, May 2024, Laguna, Philippines

Table 6: Top 5 Misclassified Ground Truth Intents and their
Frequently Predicted Values

Model ID Accuracy (%) SF Fl-score (%) Ground Truth Intent Frequently Predicted Intents
Codex 89.92 57.29 1. atis_flight atis_flight#atis_flight_time,
ChatGPT 2023 75.22 15.71 atis_flight#atis_airfare,

This work (ChatGPT 2024) 76.15 47.32 atis_flight_time, atis_cheapest,

It is interesting to note that the token-based macro-averaged
F1-score is much lower compared to the span-based micro-averaged
F1-score previously reported in Table 3 for SF. A micro-averaged
F1-score takes label imbalance into account by computing the re-
sult based on the proportion of every class. On the other hand, a
macro-averaged F1-score does not consider label imbalance as it
simply gets the mean of the F1-score of each class. The slot labels
of the ATIS dataset are highly imbalanced, which may have intro-
duced bias to the results. Another factor that contributed to the
higher micro-averaged F1-score is with the use of spans. Many of
ChatGPT’s mislabels belong to the same span or class, which means
that a portion of the errors were semantically related. For example,
the ground truth slot label "B-depart_time.period_of_day" was
frequently mislabeled as "I-depart_time.period_of_day" which
belongs to the same class (see Table 7).

The highest scores obtained by ChatGPT under the 30-shot
prompting were compared to results of the co-interactive trans-
former developed by Qin et al. [24]. As seen in the results in Table 5,
it is evident that the SOTA model outperforms ChatGPT. However,
it is worth noting that the SOTA model was trained on 4,978 utter-
ances, whereas ChatGPT was only shown 30 sample annotations.
Based on the results of varying the prompt settings in Table 3, there
is a possibility that ChatGPT may achieve the same performance as
the SOTA model using less training data. However, this is yet to be
proven empirically as there are other factors affecting ChatGPT’s
performance such as input length.

5.3 Misclassified Intents

The top 5 misclassified intents with their corresponding top 5 fre-
quently predicted values are listed in Table 6. It can be observed that
the ground truth and predicted values are semantically related. The
ground truth intent classes are usually mispredicted with combined
intents that start with the same intent class (e.g., “atis_flight”
is mispredicted as either “atis_flight#atis_flight_time” or
“atis_flight#atis_airfare”). These combined intents were cre-
ated so that utterances in ATIS will only be labeled with a single

Table 5: ChatGPT’s 30-shot Performance Comparison with a
SOTA Model

Model ID Accuracy (%) SF Fl-score (%)
SOTA Model (Co- 98.00 96.10
interactive Transformer)

This work (ChatGPT 2024 87.46 89.13

with 30-shot Prompting)

atis_airline#atis_flight no

atis_fare_basis_code,
atis_airfare, atis_restriction,
atis_airport, atis_meal

2. atis_abbreviation

atis_airfare#atis_{flight,
atis_cheapest, atis_{flight,
atis_flight#atis_flight_time

3. atis_airfare

atis_airline#atis_flight_no,
atis_airline#atis_flight,
atis_airline#atis_{flight#atis_flight_no,
atis_airline#atis_flight_time

4. atis_airline

5. atis_flight#atis_airfare atis_airfare#atis_flight_time,
atis_airfare, atis_flight,
atis_airfare#atis_flight,
atis_flight#atis_flight_time

intent despite encompassing overlapping intents. There is inherent
ambiguity in the intent annotations, which diminishes the perfor-
mance of ChatGPT in ID. Relationships can still be gleaned from
the other mispredictions that are not straightforward. For exam-
ple, the "atis_abbreviation” intent class is usually mispredicted
with the “atis_fare_basis_code” intent class, which is similar to
abbreviations, or to the types of abbreviations in the queries (e.g.,
fare code, restriction code, airport code, meal code). These show that
ChatGPT’s misclassifications are logical and not random.

5.4 Mislabeled Slots

The top 5 mislabeled slots with their corresponding top 5 frequently
predicted values are listed in Table 7. Upon inspection, it is ap-
parent that a lot of the mislabeled slots are predicted with slot
labels that are more specific but still related (e.g., B-city_name is la-
beled as “B-toloc.city_name” or “B-fromloc.city_name”). The
“0O” label was the most mislabeled slot, partly because it has the
highest frequency compared to the other slot labels. ChatGPT ap-
pears to have a tendency to consider a word as a slot despite not
corresponding to any of the predefined slot labels. The mislabels
of "B-depart_time.period_of_day” are not straightforward, but
still logical. It is usually mispredicted with slot labels that are also
pertaining to time, such as "I-depart_time.period_of_day,"and
"B-depart_time.time". These illustrate that ChatGPT’s errors in
SF are sensible and not entirely stochastic.

5.5 Unexpected Behaviors of ChatGPT

Throughout the conduct of the experiments, ChatGPT exhibited
unexpected behaviors deviant to the specified instructions in the
prompt. These unexpected behaviors can be classified into three:

PCSC2024, May 2024, Laguna, Philippines

Table 7: Top 5 Mislabeled Ground Truth Slots and their Fre-
quently Predicted Values

Anonymous under Review, et al.

Table 8: Unknown Intent Classes and Their Corresponding
Ground Truth Values

Ground Truth Slot Frequently Predicted Slots

Unknown Intent Ground Truth Intent

1.0 B-flight, B-transport_type,
B-toloc.city_name,
I-transport_type,
B-aircraft_code

2. B-city_name B-toloc.city_name,
B-fromloc.city_name,
I-toloc.city_name, O,

B-stoploc.city_name

3. I-airport_name I-fromloc.airport_name,
I-toloc.airport_name,
I-fromloc.city_name,
B-fromloc.airport_name,

I-stoploc.airport_name

4. I-city_name I-toloc.city_name,
I-fromloc.city_name, O,
I-fromloc.airport_name,

I-stoploc.city_name

5. B-depart_time.period_of_day I-depart_time.period_of_day,
B-depart_time.time,
B-depart_time.period_mod,
B-flight_time,
B-arrive_time.period_of_day

(1) unknown intent classes and slot labels, (2) incorrect number of
slots, and (3) annotating incorrect utterances.

5.5.1 Unknown Intent Classes and Slot Labels. ChatGPT outputted
several unknown intent classes and slot labels despite being in-
structed to only select from the predefined lists specified in the
prompt. Table 8 lists the top 5 most frequent unknown intent
classes and their corresponding ground truth value/s. It can be
seen that the unknown intent classes are mostly more specific
versions of the general “atis_flight” intent class. ChatGPT also
invented a more specific “atis_abbreviation” intent class, that
is, “atis_fare_basis_code”, which is a frequently asked type of
abbreviation.

Table 9 shows the top 5 most frequent unknown slot labels
and their corresponding ground truth value/s. It can be observed
that ChatGPT can infer new slot labels from the words found in
an utterance as it invents slot labels for those that should have
been tagged as “O” or null. ChatGPT also experiences difficulty in
identifying the correct prefix of slot labels and has a tendency to
label words with the “I-” prefix instead of “B-” despite it being the
first word identified for that slot’s span of text.

5.5.2 Incorrect Number of Slot Labels. We found many instances
where ChatGPT outputs an incorrect number of slot labels. We
clustered them into four (4) different scenarios as shown in Table 10
and provided an example. To address these scenarios, we included
a 6th regulation to our original prompt by explicitly stating that the
number of slot labels outputted must be equal to the number of words

1. atis_flight#atis_flight_time atis_{flight,
atis_flight#atis_airfare,
atis_flight_no, atis_airfare
atis_flight,
atis_flight_no#atis_airline,
atis_flight_no, atis_city,
atis_flight#atis_airline

2. atis_airfare#atis_flight

3. atis_flight#atis_airline atis_flight, atis_city

4. atis_airline#atis_flight atis_flight, atis_city,

atis_airline

5. atis_fare_basis_code atis_abbreviation

Table 9: Unknown Slot Labels and their Corresponding
Ground Truth Value/s

Unknown Slot Ground Truth Slot

1. B-flight

O, B-flight, I-round_trip
2. I-aircraft_code B-aircraft_code, O

3.I-depart_date.day_name O, B-depart_date.day_name,
B-day_name

4. B-capacity (@]

B-toloc.state_code,
B-state_code

5. I-toloc.state_code

in the given sentence. When this did not fully resolve the problem,
the explicit instruction, “Do not leave out any word until the end of
the prompt” is sometimes added to the prompt. Some occurrences of
concatenations were separated resulting in inconsistent output. For
this, the prompt was modified to include a 7th regulation, stating
that "contractions must not be separated".

5.5.3 Annotating Incorrect Utterances. In the 20-shot and 30-shot
prompting, ChatGPT exhibited several instances where it annotated
a different utterance from what was provided by the user. These
utterances were mostly previous utterances that were annotated by
it already. This indicates that longer prompts could trigger unex-
pected behaviors in ChatGPT. This issue was resolved by rerunning
the prompt.

6 DISCUSSION

LLMs have shown competitive performance in a variety of tasks
across different domains using zero-shot or few-shot prompting
against SOTA models [23]. Different prompting strategies can also
enhance the responses of LLMs such as chain-of-thought, self-
question, clue and reasoning prompting, and persona specifica-
tion [12, 18]. We found three main factors that may affect Chat-
GPT’s performance in the joint ID and SF task.

Evaluating ChatGPT for Joint Intent Detection and Slot Filling: Zero-Shot vs. Few-Shot Prompting

Table 10: Scenarios Causing Incorrect Number of Outputted Slot Labels and their Examples

Scenario

Utterance

Wrong Annotation Example

A new word is
annotated

A word is
repeatedly
annotated

A word is not
annotated

Contractions
are separated

saturday flight on american
airlines from milwaukee to
phoenix

what types of ground trans-
portation are available in
denver

what does ua mean

list the distance in miles
from new york’s la guardia
airport to downtown new
york city

{intent’: ’atis_flight’, ’slots> [{'word: ’saturday’, ’slot_label:
‘B-depart_date.day_name’}, {'word: ’flight’, ’slot_label’: ‘O,
{word’: ’on’, ’slot_label’: ’O’}, {'word’: ’american’, ’slot_label’:

"B-airline_name’}, {'word’: ’airlines’, ’slot_label’: ’I-airline_name’},
{'word’: ’from’, ’slot_label’: ’O’}, {word’: ‘'milwaukee’, ’slot_label’: B-
fromloc.city_name’}, {'word’: ’to’, ’slot_label’: ’O’}, {'word’: ’phoenix’,
’slot_label’: "B-toloc.city_name’}, {"word’: ’to’, ’slot_label’: "O’}]}

{’intent’: ’atis_ground_service’, ’slots’: [{'word’: *what’, ’slot_label’:
'O}, {'word’: “types’, ’slot_label’: *O’}, {'word’: ’of’, ’slot_label’: O},
{'word: ’ground’, ’slot_label’: "O’}, {'word’: ’ground’, ’slot_label’:
"B-transport_type’}, {'word’: ’transportation’, ’slot_label: ’I-
transport_type’}, {'word’: ’are’, ’slot_label’: *O’}, {’'word’: ’available’,
’slot_label’: "0}, {'word’: ’in’, ’slot_label’: ’O’}, {'word’: ’denver’,
’slot_label’: B-city_name’}]}

{intent’: ’atis_abbreviation’, ’slots’: [{'word’: ’what’, ’slot_label’:
’0’}, {'word’: ’does’, ’slot_label’: *O’}, {'word’: ’ua’, ’slot_label’: "B-
abbreviation’}]}

{’intent’: "atis_distance’, ’slots’: [{'word’: ’list’, ’slot_label’: *O’}, {'word’:
’the’, ’slot_label’: *O’}, {'word’: ’distance’, ’slot_label’: *O’}, {'word’:
’in’, ’slot_label’: ’O’}, {'word’: 'miles’, ’slot_label’: ’O’}, {'word’: *from’,
’slot_label’: *O’}, {'word’: 'new’, ’slot_label’: 'B-fromloc.city_name’},
{'word’: ’york’, ’slot_label’: ’I-fromloc.city_name’}, {'word: "’s",
’slot_label’: ’O’}, {'word’: ’la’, ’slot_label’: ’B-fromloc.airport_name’},
{'word’: ’guardia’, ’slot_label’: 'I-fromloc.airport_name’}, {'word’: "air-
port’, ’slot_label’: "I-fromloc.airport_name’}, {"word’: ’to’, ’slot_label’:
’0O’}, {'word’: ’downtown’, ’slot_label’: ’B-toloc.city_name’}, {"word’:
‘new’, ’slot_label’: "I-toloc.city_name’}, {'word’: *york’, ’slot_label’: 'I-
toloc.city_name’}, {'word’: ’city’, ’slot_label’: 'I-toloc.city_name’}]}

PCSC2024, May 2024, Laguna, Philippines

Contextual information. The number of examples provided
to ChatGPT influences its performance in the joint task. The results
showed that providing ChatGPT with more examples generally
improves its performance for both ID and SF. However, the im-
provement becomes gradual upon reaching a certain point. It is
also worth mentioning that the 1-shot performance is worse com-
pared to zero-shot for ID, which shows ChatGPT’s sensitivity to
noise.

Metrics for evaluation. Metric selection is another crucial
factor to obtain an accurate evaluation of ChatGPT’s performance,
as evidenced by the big gap between the span-based micro-averaged
slot F1 score and the token-based macro-averaged slot F1 score in
this study. The former metric accounts for data imbalance and
semantically related slot labels (i.e., belonging to the same class),
and is the standard used in literature [31].

Unexpected behaviors. Lastly, ChatGPT tends to exhibit un-
expected behaviors that deviate from the specified instructions.
These unexpected behaviors include generating unknown outputs,
outputting incorrect number of slot labels, and annotating previous
prompts instead of the current one. These unexpected behaviors
were observed more frequently with longer prompts, which shows

that prompt length has an impact on ChatGPT’s performance. Chat-
GPT also demonstrated unexpected behaviors in other tasks such
as emotion classification [13] and code generation [1].

7 CONCLUSION

In this study, we compared ChatGPT’s performance on the joint ID
and SF task under zero-shot and different few-shot (i.e., 1-shot, 5-
shot, 10-shot, 20-shot, and 30-shot) prompt settings. Results showed
that giving more examples to ChatGPT generally improves its per-
formance, but becomes gradual upon reaching a certain threshold.
Future work could investigate the number of examples at which
ChatGPT’s performance begins to decline on the joint ID and SF
task. This would also reveal whether ChatGPT can be at par, or
even surpass the performance of SOTA models by providing more
examples to it. This raises the need for a mechanism to handle long
prompts, such as compression, due to the token limits of LLMs. This
may also mitigate ChatGPT’s performance issues associated with
long prompts.

PCSC2024, May 2024, Laguna, Philippines

REFERENCES

[1] Alessio Buscemi. 2023. A Comparative Study of Code Generation using ChatGPT

[2

(6

[10

[11

[12

[13

[14

[15

[

=

=

]

]

]

3.5 across 10 Programming Languages. ArXiv abs/2308.04477 (2023).
//api.semanticscholar.org/CorpusID:260735527

Asli Celikyilmaz and Dilek Hakkani-Tur. 2012. A joint model for discovery of
aspects in utterances. In Proceedings of the 50th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), Haizhou Li, Chin-Yew
Lin, Miles Osborne, Gary Geunbae Lee, and ong C. Park (Eds.). Association for
Computational Linguistics, Jeju Island, Korea, 330-338. https://aclanthology.
org/P12-1035

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu,
Hao Chen, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, Wei Ye, Yue Zhang, Yi
Chang, Philip S. Yu, Qiang Yang, and Xing Xie. 2024. A survey on evaluation
of large language models. ACM Trans. Intell. Syst. Technol. (jan 2024). https:
//doi.org/10.1145/3641289 Just Accepted.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de
Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf,
Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail
Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shan-
tanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh
Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei,
Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating large
language models trained on code. arXiv:2107.03374 [cs.LG]

Alice Coucke, Alaa Saade, Adrien Ball, Théodore Bluche, Alexandre Caulier,
David Leroy, Clément Doumouro, Thibault Gisselbrecht, Francesco Caltagirone,
Thibaut Lavril, Maél Primet, and Joseph Dureau. 2018. Snips Voice Platform: An
embedded spoken language understanding system for private-by-design voice
interfaces. arXiv:1805.10190 [cs.CL]

Jacob Devlin, Ming-Wei Chang, and Kristina Toutanova Kenton Lee. 2019. BERT:
pre-training of deep bidirectional transformers for language understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers), Jill Burstein, Christy Doran, and Thamar Solorio (Eds.). Association
for Computational Linguistics, Minneapolis, Minnesota, 4171-4186. https://doi.
org/10.18653/v1/N19-1423

Mauajama Firdaus, Shobhit Bhatnagar, Asif Ekbal, and Pushpak Bhattacharyya.
2018. Intent detection for spoken language understanding using a deep ensemble
model: 15th Pacific Rim International Conference on Artificial Intelligence, Nanjing,
China, August 28-31, 2018, Proceedings, Part I. 629-642. https://doi.org/10.1007/
978-3-319-97304-3_48

Daniel Guo, Gokhan Tur, Wen tau Yih, and Geoffrey Zweig. 2014. Joint semantic
utterance classification and slot filling with recursive neural networks. In 2014
IEEE Spoken Language Technology Workshop (SLT). 554-559. https://doi.org/10.
1109/SLT.2014.7078634

Mutian He and Philip N. Garner. 2023. Can ChatGPT detect intent? Evaluating
large language models for spoken language understanding. In Proc. INTERSPEECH
2023.1109-1113. https://doi.org/10.21437/Interspeech.2023-1799

Charles T. Hemphill, John J. Godfrey, and George R. Doddington. 1990. The
ATIS spoken language systems pilot corpus. In Speech and Natural Language:
Proceedings of a Workshop Held at Hidden Valley, Pennsylvania, June 24-27,1990.
https://aclanthology.org/H90-1021

Minwoo Jeong and Gary Geunbae Lee. 2008. Triangular-chain conditional random
fields. IEEE Transactions on Audio, Speech, and Language Processing 16 (2008),
1287-1302. https://api.semanticscholar.org/CorpusID:14617149

Katikapalli Subramanyam Kalyan. 2024. A survey of GPT-3 family large language
models including ChatGPT and GPT-4. Natural Language Processing Journal 6
(2024), 100048. https://doi.org/10.1016/j.nlp.2023.100048

Jan Kocon, Igor Cichecki, Oliwier Kaszyca, Mateusz Kochanek, Dominika Szydto,
Joanna Baran, Julita Bielaniewicz, Marcin Gruza, Arkadiusz Janz, Kamil Kanclerz,
Anna Kocon, Barttomiej Koptyra, Wiktoria Mieleszczenko-Kowszewicz, Piotr
Mitkowski, Marcin Oleksy, Maciej Piasecki, Lukasz Radlinski, Konrad Wojtasik,
Stanistaw Wozniak, and Przemystaw Kazienko. 2023. ChatGPT: Jack of all trades,
master of none. Information Fusion 99 (2023), 101861. https://doi.org/10.1016/j.
inffus.2023.101861

Sheetal Kusal, Shruti Patil, Jyoti Choudrie, Ketan Kotecha, Sashikala Mishra, and
Ajith Abraham. 2022. Al-Based conversational agents: A scoping review from
technologies to future directions: Conversational agents. IEEE Access 10 (Aug
2022), 92337-92356. https://doi.org/10.1109/ACCESS.2022.3201144

Bing Liu and Ian R. Lane. 2016. Attention-based recurrent neural network
models for joint intent detection and slot filling. In Interspeech 2016, 17th Annual
Conference of the International Speech Communication Association, San Francisco,
CA, USA, September 8-12, 2016, Nelson Morgan (Ed.). ISCA, 685-689. https:

https:

[23

[24]

™
S

[26

[27

[28

[29

(30]

[31

[32

[33

Anonymous under Review, et al.

//doi.org/10.21437/INTERSPEECH.2016-1352

Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad Sagqib, Saeced Anwar,
Muhammad Usman, Naveed Akhtar, Nick Barnes, and Ajmal Mian. 2024. A
comprehensive overview of large language models.

OpenAl [n.d.]. https://platform.openai.com/docs/quickstart?context=python
OpenAl [n.d.]. https://platform.openai.com/docs/guides/prompt-engineering
OpenAl [n.d.]. https://platform.openai.com/docs/guides/text-generation
OpenAl 2023. https://openai.com/blog/new-models-and-developer-products-
announced-at-devday#OpenAl

Wenbo Pan, Qiguang Chen, Xiao Xu, Wanxiang Che, and Libo Qin. 2023.
A preliminary evaluation of chatGPT for zero-shot dialogue understanding.
arXiv:2304.04256 [cs.CL]

Jangwon Park. 2021. Jointbert: Pytorch implementation of Jointbert: “Bert for joint
intent classification and slot filling”. https://github.com/monologg/JointBERT/
tree/master

Chengwei Qin, Aston Zhang, Zhuosheng Zhang, Jiaao Chen, Michihiro Yasunaga,
and Diyi Yang. 2023. Is ChatGPT a general-purpose natural language processing
task solver?. In Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing. Association for Computational Linguistics, Singapore, 1339—
1384. https://doi.org/10.18653/v1/2023.emnlp-main.85

Libo Qin, Tailu Liu, Wanxiang Che, Bingbing Kang, Sendong Zhao, and Ting
Liu. 2021. A co-interactive transformer for joint slot filling and intent detection.
In ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). 8193-8197. https://doi.org/10.1109/ICASSP39728.
2021.9414110

Partha Pratim Ray. 2023. ChatGPT: A comprehensive review on background,
applications, key challenges, bias, ethics, limitations and future scope. Internet of
Things and Cyber-Physical Systems 3 (2023), 121-154. https://doi.org/10.1016/].
iotcps.2023.04.003

Ted Sanders. 2023. How to format inputs to CHATGPT models. https://cookbook.
openai.com/examples/how_to_format_inputs_to_chatgpt_models

Nahida Shafi and Manzoor Ahmed Chachoo. 2023. Fine-Tuned BERT with
attention-based Bi-GRU-CapsNet framework for joint intent recognition and slot
filing. In 2023 International Conference on Advancement in Computation Computer
Technologies (InCACCT). 369-374. https://doi.org/10.1109/InCACCT57535.2023.
10141744

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Processing Systems, 1. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.),
Vol. 30. Curran Associates, Inc., 1-11. https://proceedings.neurips.cc/paper_
files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa- Paper.pdf

Haifeng Wang, Jiwei Li, Hua Wu, Eduard Hovy, and Yu Sun. 2023. Pre-Trained
language models and their applications. Engineering 25 (2023), 51-65. https:
//doi.org/10.1016/j.eng.2022.04.024

Ye-Yi Wang. 2010. Strategies for statistical spoken language understanding
with small amount of data - an empirical study. In Proceedings of Interspeech
(proceedings of interspeech ed.). International Speech Communication Associa-
tion. https://www.microsoft.com/en-us/research/publication/strategies-for-
statistical-spoken-language-understanding- with- small-amount- of-data-an-
empirical-study/

Henry Weld, Xiaoqi Huang, Siqu Long, Josiah Poon, and Soyeon Caren Han. 2022.
A survey of joint intent detection and slot-filling models in natural language
understanding. Comput. Surveys 55, 8 (2022), 1-38. https://doi.org/10.1145/
3547138

Puyang Xu and Ruhi Sarikaya. 2013. Convolutional neural network based
triangular CRF for joint intent detection and slot filling. 2013 IEEE Work-
shop on Automatic Speech Recognition and Understanding (2013), 78-83. https:
//api.semanticscholar.org/CorpusID:10532715

Qihuang Zhong, Liang Ding, Juhua Liu, Bo Du, and Dacheng Tao. 2023. Can
ChatGPT understand too? A comparative study on ChatGPT and fine-tuned
BERT. arXiv:2302.10198 [cs.CL]

https://api.semanticscholar.org/CorpusID:260735527
https://api.semanticscholar.org/CorpusID:260735527
https://aclanthology.org/P12-1035
https://aclanthology.org/P12-1035
https://doi.org/10.1145/3641289
https://doi.org/10.1145/3641289
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/1805.10190
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1007/978-3-319-97304-3_48
https://doi.org/10.1007/978-3-319-97304-3_48
https://doi.org/10.1109/SLT.2014.7078634
https://doi.org/10.1109/SLT.2014.7078634
https://doi.org/10.21437/Interspeech.2023-1799
https://aclanthology.org/H90-1021
https://api.semanticscholar.org/CorpusID:14617149
https://doi.org/10.1016/j.nlp.2023.100048
https://doi.org/10.1016/j.inffus.2023.101861
https://doi.org/10.1016/j.inffus.2023.101861
https://doi.org/10.1109/ACCESS.2022.3201144
https://doi.org/10.21437/INTERSPEECH.2016-1352
https://doi.org/10.21437/INTERSPEECH.2016-1352
https://platform.openai.com/docs/quickstart?context=python
https://platform.openai.com/docs/guides/prompt-engineering
https://platform.openai.com/docs/guides/text-generation
https://openai.com/blog/new-models-and-developer-products-announced-at-devday#OpenAI
https://openai.com/blog/new-models-and-developer-products-announced-at-devday#OpenAI
https://arxiv.org/abs/2304.04256
https://github.com/monologg/JointBERT/tree/master
https://github.com/monologg/JointBERT/tree/master
https://doi.org/10.18653/v1/2023.emnlp-main.85
https://doi.org/10.1109/ICASSP39728.2021.9414110
https://doi.org/10.1109/ICASSP39728.2021.9414110
https://doi.org/10.1016/j.iotcps.2023.04.003
https://doi.org/10.1016/j.iotcps.2023.04.003
https://cookbook.openai.com/examples/how_to_format_inputs_to_chatgpt_models
https://cookbook.openai.com/examples/how_to_format_inputs_to_chatgpt_models
https://doi.org/10.1109/InCACCT57535.2023.10141744
https://doi.org/10.1109/InCACCT57535.2023.10141744
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1016/j.eng.2022.04.024
https://doi.org/10.1016/j.eng.2022.04.024
https://www.microsoft.com/en-us/research/publication/strategies-for-statistical-spoken-language-understanding-with-small-amount-of-data-an-empirical-study/
https://www.microsoft.com/en-us/research/publication/strategies-for-statistical-spoken-language-understanding-with-small-amount-of-data-an-empirical-study/
https://www.microsoft.com/en-us/research/publication/strategies-for-statistical-spoken-language-understanding-with-small-amount-of-data-an-empirical-study/
https://doi.org/10.1145/3547138
https://doi.org/10.1145/3547138
https://api.semanticscholar.org/CorpusID:10532715
https://api.semanticscholar.org/CorpusID:10532715
https://arxiv.org/abs/2302.10198

	Abstract
	1 Introduction
	2 Related Works
	2.1 Early Approaches in Joint ID and SF
	2.2 Deep Learning Models for Joint ID and SF
	2.3 Large Language Models for Joint ID and SF

	3 Task Description
	3.1 Joint Task
	3.2 Dataset
	3.3 Prompt Engineering

	4 Method
	4.1 Dataset
	4.2 Experiments
	4.3 Performance Evaluation

	5 Results and findings
	5.1 Zero-shot v.s. Few-shot Performance
	5.2 Comparison with Other Models
	5.3 Misclassified Intents
	5.4 Mislabeled Slots
	5.5 Unexpected Behaviors of ChatGPT

	6 Discussion
	7 Conclusion
	References

