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ABSTRACT
Neural review-based recommender systems often lack explainabil-
ity due to the black-box nature of neural networks. This paper
introduces SUMMER, a novel, accurate, and explainable collabora-
tive filtering (CF) framework. SUMMER generates summary-level
explanations for each item and user, mirroring the style of real-life
explanation texts. This integration of summarization into the CF
architecture not only improves explainability but also enhances
the encoding of users and items, boosting recommendation per-
formance. SUMMER is the first summarization-driven CF model
capable of generating both extractive and abstractive explanations,
offering flexibility in explanation generation. We further argue for
reformulating explainability as unsupervised summarization, rec-
ognizing the impracticality of obtaining ground-truth explanations
for every item and user. Our experiments demonstrate SUMMER’s
strong rating prediction accuracy, comparable to other state-of-the-
art approaches. Moreover, our explainability study reveals a user
preference for extractive summary-level explanations.
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1 INTRODUCTION
Recommender systems have become indispensable tools in navi-
gating the vast landscape of online information. Widely integrated
into web applications, they revolutionize how users discover and
assess products and services across various domains, from shop-
ping to entertainment and news consumption [3, 35]. Collaborative
filtering (CF) lies at the heart of these systems, aiming to accurately
capture user preferences and item characteristics. While early CF
models relied solely on numeric ratings, this approach oversimpli-
fies the nuanced nature of user preferences and suffers from sparse
rating matrices, impairing accuracy [16, 21, 38]. To address these
challenges, researchers have turned to review texts as a valuable
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Table 1: Illustration of the different explanation types.
A review-level explanation is simply the highest weighted review,
and a word-level explanation is composed of underlined words with
the highest attention scores. Our proposed summary-level explana-
tions closely resemble real-life explanations by deriving information
from multiple reviews.

Reviews Received by an Item (e.g., Printer)

(1) This printer has it all. Print, scan, copy, fax and wifi. Wifi makes this printer.
No more cables all over the place and no more cluttered desks. Before, if I
wanted to print something from my laptop I had to go to the printer and
connect the cable. Now I can print over wifi. It prints very beautiful and also
scans very high resolutions. Set up was a breeze. Getting other computers
to print was also a breeze.

(2) First of all, it does it all, and does it well. Print, scan, fax, and photos. Its
six-ink system give archival photo prints with long life. This is my first
wireless printer, and I have to say, it is a great system: easy to set up, and
eliminates that spaghetti-ball of wires. Definitely a big plus. It’s fast; very
fast. Really cool-looking, and easy to use.

Generated Explanations

• Word-Level: First of all, it does it all, and does it well. Print, scan, fax, and
photos. Its six-ink system give archival photo prints with long life. This is
my first wireless printer, and I have to say, it is a great system: easy to set up,
and eliminates that spaghetti-ball of wires. Definitely a big plus. It’s fast;
very fast. Really cool-looking, and easy to use.

• Review-Level: First of all, it does it all, and does it well. Print, scan, fax,
and photos. Its six-ink system give archival photo prints with long life. This
is my first wireless printer, and I have to say, it is a great system: easy to
set up, and eliminates that spaghetti-ball of wires. Definitely a big plus. It’s
fast; very fast. Really cool-looking, and easy to use.

• Extractive Summary-Level: No more cables all over the place and no
more cluttered desks. Before, if I wanted to print something from my laptop
I had to go to the printer and connect the cable. Its six-ink system give
archival photo prints with long life. This is my first wireless printer, and I
have to say, it is a great system: easy to set up, and eliminates that spaghetti-
ball of wires.

• Abstractive Summary-Level: I love this product. It is a great-looking
printer and has an answering machine in one place. Setup was easy and
I was happy to find this product, but it’s a bit less expensive than a good
purchase. It is a good value for the money.

source of information. By leveraging user-given reviews that dis-
cuss the rationale behind the ratings, recommender systems can
uncover latent properties and dimensions of user opinions that are
not captured by ratings alone [31]. Reviews offer a wealth of rich,
multidimensional insights that cannot be otherwise acquired solely
from ratings [3].

However, most neural review-based recommender systems lack
explainability, which is crucial for user trust and decision-making
[23, 25, 37]. The inherent opacity of neural networks, often re-
ferred to as black-boxes, creates a a dilemma: a trade-off between
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accuracy and explainability. [23, 25, 30]. The most accurate models
often suffer from complexity and a lack of explainability [36]. Con-
versely, simple, explainable methods may compromise accuracy.
Striking a balance between explainability and accuracy poses a sig-
nificant challenge. Constructing models that are both explainable
and accurate is a critical research agenda for the machine learning
community to ensure that we derive benefits frommachine learning
fairly and responsibly [23].

To improve user trust and understanding, recent research has
explored various explainability methods for recommender systems.
Common approaches include review-level and word-level explana-
tions. Review-level explanations, utilizing attention mechanisms to
select high-scoring reviews, are considered state-of-the-art [3, 8].
Word-level explanations, which select top words based on atten-
tion weights, offer another strategy [26]. Nevertheless, both types
may not fully resemble real-life explanations; as an illustration, in
Table 1, the review-level explanation is identical to the second item
review, assuming that it has the higher attention weight. It also
inadvertently disregards other possibly useful sentences from re-
views with lower attention scores. In essence, this degenerates into
a review selection task. Moreover, while a word-level explanation
highlights relevant terms, its fragmented nature may hinder real-
world recommendation scenarios, as it may lack overall coherence
and intelligibility for users.

Therefore, we propose and pioneer a novel CF framework called
SUMMER (derived from Summarization-Driven Collaborative Fil-
tering forExplainableRecommendation). Ourmodel offers competi-
tive recommendation performance and contributes to explainability
research by exploring a less-investigated approach: treating it as
an unsupervised summarization task within recommender systems.
Unlike a review-level explanation, a summary-level explanation is
expected to retain the most relevant texts across multiple reviews.
Other advantages that make it preferred are its coherence, non-
redundancy, and readability [4, 22]. In our implementation, SUM-
MER integrates a summarization layer into a CF architecture. This
layer generates either extractive (selecting salient text segments)
or abstractive (rephrasing with natural language generation) sum-
maries for each item and user. The summarization layer acts as an
encoding mechanism, with item/user embeddings pre-trained on
the summarization task and fine-tuned for rating prediction. This
novel approach unifies representation and explanation – the sum-
mary both represents and explains an item (or user). Importantly,
our model performs unsupervised summarization, as expecting
ground-truth summaries for large datasets is unrealistic and obtain-
ing them manually is cumbersome. This lack of reliance on labeled
data makes the approach especially appealing.

1.1 Contributions
These are the major contributions of our study:

(1) We pioneer the integration of summarization and collabora-
tive filtering for explainability. To the best of our knowledge,
SUMMER is the first CF model capable of generating either
extractive or abstractive explanations, offering a certain de-
gree of flexibility.

(2) To our knowledge, we are the first to emphasize that re-
formulating explainability as unsupervised summarization

is necessary to address the impracticality of ground-truth
explanations.

(3) Our experiments demonstrate SUMMER’s competitive rat-
ing prediction accuracy, aligning with or surpassing other
state-of-the-art methods. In the context of explainability,
our study suggests a potential preference for summary-level
explanations, with extractive summaries being particularly
well-received.

(4) This study additionally explores the impact of explanation
type (extractive or abstractive) on both recommendation
performance and real-life acceptability.

2 REVIEW OF RELATED LITERATURE
Designing a collaborative filtering (CF) model involves two key
steps: learning user/item representations and modeling user-item
interactions based on those representations [11]. A fundamental
work in this domain is neural collaborative filtering (NCF), which
utilizes multilayer perceptron (MLP) layers to learn flexible interac-
tions between users and items [12]. NCF overcomes the limitations
of inner product-based interaction functions, enabling it to capture
rich patterns in real-world data. DeepCoNN is the first model to
jointly represent users and items using reviews, employing convo-
lutional neural networks (CNN) in parallel networks connected by
a shared layer [38]. NARRE, similar to DeepCoNN, incorporates
review-level attention mechanisms to enhance embedding quality
and provide review-level explanations [3].

Other notable studies include AHN, HUITA, MPCN, and NCEM,
which employ various attention mechanisms to improve accuracy
and explainability [7, 8, 28, 32]. These models integrate attention
mechanisms differently to discern informative parts of data samples,
leading to enhanced performance. HUITA incorporates a hierar-
chical, three-tier attention network. MPCN is similar to NARRE,
but the former does not rely on convolutional layers. Instead, it
introduces a review-by-review pointer-based mechanism that is
co-attentive to model user-item relationships. AHN proposes a
multi-hierarchical paradigm that recognizes user and item reviews
through co-attention. NCEM replaces the CNN with a pre-trained
BERT model in its parallel user/item networks. Incorporating BERT
is found to be more advantageous since it can fully retain global
context and word frequency information, crucial factors that can
have consequences on rating prediction accuracy or recommenda-
tion performance [29]. In summary, there appears to be a trend;
tackling explainability improves prediction and recommendation
performance consequentially. While most recommender models
address this via attention mechanisms, our proposed model solves
this by unifying representation and explanation in the form of
summaries.

On the principles of text summarization, two main approaches
exist: extractive, which selects important sentences as they are,
and abstractive, which rewrites sentences. Extractive methods are
more commonly researched [22], while abstractive methods require
advanced natural language generation techniques [34]. Summariza-
tion can also be categorized by the number of source documents:
single-document summarization (SDS) and multi-document sum-
marization (MDS), with MDS being more challenging due to inte-
grating information from multiple sources [4]. Most summarization
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models rely on supervised learning, necessitating labeled training
data, which is often scarce and leads to poor generalization across
domains [4, 5]. Miller proposed an unsupervised extractive method
using BERT embeddings and 𝐾-Means clustering for sentence se-
lection [20]. Chu and Liu introduced MeanSum, an unsupervised
abstractive summarization model based on an autoencoder archi-
tecture [5].

The challenges inherent in summarization also apply to explain-
able recommender systems, where obtaining labeled datasets with
ground-truth explanations is impractical. This makes unsupervised
multi-document summarization particularly valuable. Within the
proposed SUMMER framework, each document represents a user
review, providing flexibility in adopting either extractive or abstrac-
tive methods.

3 METHODOLOGY
3.1 Problem Formulation and Overview
The training dataset 𝜏 consists of𝑁 tuples, with the latter indicating
the size of the dataset. Each tuple follows this form: (𝑢, 𝑖, 𝑟𝑢𝑖 , 𝑣𝑢𝑖 )
where 𝑟𝑢𝑖 and 𝑣𝑢𝑖 respectively denotes the ground-truth rating
and review given by user 𝑢 to item 𝑖 . Let 𝑅𝑉𝑢 = {𝑣𝑢1, 𝑣𝑢2, ..., 𝑣𝑢 𝑗 }
be the set of all 𝑗 reviews written by user 𝑢. Similarly, let 𝑅𝑉𝑖 =
{𝑣1𝑖 , 𝑣2𝑖 , ..., 𝑣𝑘𝑖 } be the set of all 𝑘 reviews received by item 𝑖 . Both
𝑅𝑉𝑢 and 𝑅𝑉𝑖 are acquired from scanning 𝜏 itself row-by-row. SUM-
MER’s input is a user-item pair (𝑢, 𝑖) from each tuple in 𝜏 . We
specifically feed 𝑅𝑉𝑢 and 𝑅𝑉𝑖 to the model as the initial inputs. The
primary output is the predicted rating 𝑟𝑢𝑖 ∈ R that user 𝑢 may give
to item 𝑖 . The rating prediction task can be expressed as:

𝑝𝑟𝑒𝑑𝑖𝑐𝑡 (𝑢, 𝑖) = (𝑅𝑉𝑢 , 𝑅𝑉𝑖 ) → 𝑟𝑢𝑖 (1)

Its corresponding objective function, the mean squared error (MSE),
is given below:

𝑀𝑆𝐸 =
1
|𝜏 |

∑︁
𝑢,𝑖∈𝜏

(𝑟𝑢𝑖 − 𝑟𝑢𝑖 )2 (2)

SUMMER’s architecture is illustrated in Figure 1. It has two
parallel modeling networks that respectively learn summarization-
derived user and item representations. For the following subsection
of this paper (i.e., 3.2 Summarization Layer), we will only discuss
the item modeling procedure since it is nearly identical to user
modeling, with their inputs as the only difference.

3.2 Summarization Layer
Through the summarization layer, our model’s design is flexible
enough to accommodate two possible options for explainability:
extractive and abstractive, both of which can effectively repre-
sent, explain, and encode users and items. This layer produces the
pre-trained summary-level explanation (for every user and every
item), which we also call representative summary, representation-
explanation, or explanation-summary in different parts of this paper.
This section discusses our unsupervised implementations for either
summarization approach.

3.2.1 EXTRACTIVE SUMMARIZATION LAYER. The reviews in
𝑅𝑉𝑖 are first concatenated together to form a single document. We
employ spaCy’s Sentencizer, a sentence segmentation tool for split-
ting the document into individual sentences [9]. The set of all

sentences in 𝑅𝑉𝑖 is now given by 𝐸𝑖 = {𝑒𝑖1, 𝑒𝑖2, ..., 𝑒𝑖𝑔} where 𝑔
refers to the total number of sentences. Afterward, 𝐸𝑖 is fed to
a pre-trained BERT model to obtain corresponding sentence em-
beddings. This process produces the set of sentence embeddings
𝐸′
𝑖
= {𝑒′

𝑖1, 𝑒
′
𝑖2, ..., 𝑒

′
𝑖𝑔
}, where 𝐸′

𝑖
∈ R𝑔×𝑎 and 𝑎 denotes BERT’s em-

bedding dimension. The BERTmodel choices can either be standard
BERT-Large, wherein the contextualized embeddings can be de-
rived from the penultimate encoder layer [20] or Sentence-BERT,
which is based on RoBERTa-Large previously trained on the se-
mantic textual similarity task [24]. Embedding clustering, based on
𝐾-Means, is then performed to partition the sentence embeddings
in 𝐸′

𝑖
into 𝐾 clusters. In our approach, 𝐾 can be calculated using a

hyperparameter called summary ratio (𝜙), which is the percentage
of sentences that shall comprise the actual summary.

𝐾 = 𝜙 × 𝑔 (3)

The objective of embedding clustering is to minimize the sum of
squared errors (𝑆𝑆𝐸), i.e., the intra-cluster sum of the distances
from each sentence to its nearest centroid, given by the following
equation [33]:

𝑆𝑆𝐸𝑖 =

𝐾∑︁
𝑥=1

∑︁
𝑒′
𝑖𝑦
∈𝐶𝑥

| |𝑒′𝑖𝑦 − 𝑐𝑥 | |2 (4)

where 𝑐𝑥 is the centroid of cluster𝐶𝑥 that is closest to the sentence
embedding 𝑒′

𝑖𝑦
. The objective function is optimized for item 𝑖 by

running the assignment and update steps until the cluster centroids
stabilize. The assignment step assigns each sentence to a cluster
using the shortest distance between the sentence embedding and
cluster centroid, provided by the formula below:

𝑛𝑐 (𝑒′𝑖𝑦) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥=1,...,𝐾 {| |𝑒′𝑖𝑦 − 𝑐𝑥 | |
2} (5)

where 𝑛𝑐 is a function that obtains the cluster closest to 𝑒′
𝑖𝑦
. The

update step recomputes the cluster centroids based on new assign-
ments from the previous step. This is defined as:

𝑐𝑥 =
1

|𝐶𝑥 |

𝑔∑︁
𝑦=1

{𝑒′𝑖𝑦 |𝑛𝑐 (𝑒
′
𝑖𝑦) = 𝑥} (6)

where |𝐶𝑥 | refers to the number of sentences that cluster 𝐶𝑥 con-
tains. By introducing clustering, redundant and related sentences
are grouped in the same cluster. Sentences closest to each cluster
centroid are selected and combined to form the extractive summary.
This is expressed as:

𝑛𝑠 (𝐶𝑥 ) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑦=1,...,𝑔{| |𝑒′𝑖𝑦 − 𝑐𝑥 | |2}
𝑋𝑆𝑖 = [𝑒′

𝑖,𝑛𝑠 (𝐶1 ) , 𝑒
′
𝑖,𝑛𝑠 (𝐶2 ) , ..., 𝑒

′
𝑖,𝑛𝑠 (𝐶𝐾 ) ]

𝑋𝑆𝑖 =
1
𝐾

𝐾∑︁
𝑥=1

𝑒′
𝑖,𝑛𝑠 (𝐶𝑥 )

(7)

where 𝑛𝑠 is a function that returns the nearest sentence to the
centroid 𝑐𝑥 of cluster 𝐶𝑥 , 𝑋𝑆𝑖 ∈ R𝐾×𝑎 is an embedding matrix of
the extractive summary sentences, and𝑋𝑆𝑖 ∈ R1×𝑎 is the extractive
summary embedding of item 𝑖 .
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Figure 1: The proposed SUMMER framework.

3.2.2 ABSTRACTIVE SUMMARIZATION LAYER. Let D be the
set of all reviews in 𝜏 and |D| be the number of all tuples (i.e.,
user-item pairs) in 𝜏 . We initially have an invertible tokenizer 𝑇
that maps the reviews in D to token sequences 𝑇 (D) from a fixed
vocabulary. Also, let V ⊂ 𝑇 (D) denote the tokenized reviews that
have a maximum length of 𝐻 . For item 𝑖 , given a set of reviews
𝑅𝑉𝑖 ⊂ V, the goal is to produce an explanation-summary 𝑋𝑆𝑖 ∈
𝑇 (D) using the same vocabulary.

The abstractive summarization layer contains two key compo-
nents: the autoencoder and summarization modules. The autoen-
coder learns representations for each review in the training dataset
𝜏 and consequently constrains the generated summaries in its lan-
guage domain. The encoder 𝜙𝐸 maps reviews to real-vector codes
denoted by 𝑧𝑦 = 𝜙𝐸 (𝑣𝑦𝑖 ). After processing 𝑣 one token per every
time step, its encoding is expressed by concatenating the LSTM’s
final hidden and cell states, i.e., 𝜙𝐸 (𝑣) = [ℎ, 𝑐] [13]. Afterward, the
decoder LSTM defines a distribution overV contingent on the latent
code 𝑝 (𝑣 |𝑧𝑦) = 𝜙𝐷 (𝑧𝑦). This is accomplished by initializing the de-
coder’s initial state with 𝑧𝑦 and training it by teacher-forcing using
a standard cross-entropy loss to reconstruct the original reviews.
The autoencoder’s objective is to minimize the reconstruction loss
(𝑅𝐸𝐶), which is the collective cross-entropy losses (𝐶𝐸) between the
original reviews and their corresponding reconstructed versions:

𝑅𝐸𝐶 (𝑅𝑉𝑖 , 𝜙𝐸 , 𝜙𝐷 ) =
𝑘∑︁
𝑦=1

𝐶𝐸 (𝑣𝑦𝑖 , 𝜙𝐷 (𝜙𝐸 (𝑣𝑦𝑖 ))) (8)

On the other hand, the summarization module learns to produce
explanation-summaries that are semantically similar to the input
reviews. The latent codes of the reviews received by item 𝑖 (i.e.,
{𝑧1, 𝑧2, 𝑧3, ..., 𝑧𝑘 }) are integrated by averaging their hidden and cell
states in 𝑧 = [ℎ̄, 𝑐]. The joint latent code 𝑧 is decoded by 𝜙𝐷 into
summary 𝑠 , which is then later encoded by 𝜙𝐸 (𝑠) = [ℎ𝑠 , 𝑐𝑠 ]. The
encoded summary’s hidden state also serves as the item’s abstrac-
tive summary embedding: 𝑋𝑆𝑖 = ℎ𝑠 ∈ R1×𝑎 , where 𝑎 is the hidden
unit size of the encoder.

The process of re-encoding and calculating the similarity loss
between the generated summary and its source reviews further
constrains the former to be semantically similar to the latter. Re-
garding this, the following is the objective function that minimizes

the similarity loss (𝑆𝐼𝑀) based on the average cosine distance (𝐶𝑂𝑆)
between the hidden states ℎ𝑦 of each encoded review and 𝑋𝑆𝑖 of
the encoded summary:

𝑆𝐼𝑀 (𝑅𝑉𝑖 , 𝜙𝐸 , 𝜙𝐷 ) =
1
𝑘

𝑘∑︁
𝑦=1

𝐶𝑂𝑆 (ℎ𝑦, 𝑋𝑆𝑖 )) (9)

Similar to Chu and Liu’s approach [5], the actual summary text is
also generated using the Straight Through Gumbel-Softmax strat-
egy. This performs approximated sampling from a categorical dis-
tribution, i.e., a softmax over the vocabulary, allowing gradients to
be backpropagated through discrete generation.

3.3 Embedding Fusion Layer
We also draw certain principles from the traditional latent factor
model by incorporating rating-based vectors that depict users and
items to a certain extent [3]. These are represented by 𝐼𝑉𝑢 and
𝐼𝑉𝑖 , both in R1×𝑚 where𝑚 is the dimension of the latent vectors.
The hidden vectors are fused with their corresponding summary
embeddings. This is facilitated by these fusion levels, illustrated by
the following formulas:

𝑓𝑢 = (𝑋𝑆𝑢𝑊𝑢 + 𝑏𝑢 ) + 𝐼𝑉𝑢
𝑓𝑖 = (𝑋𝑆𝑖𝑊𝑖 + 𝑏𝑖 ) + 𝐼𝑉𝑖

𝑓𝑢𝑖 = [𝑓𝑢 , 𝑓𝑖 ]
(10)

where 𝑓𝑢 and 𝑓𝑖 pertain to the preliminary fusion layers and both
are in R1×𝑚 ;𝑊𝑢 and𝑊𝑖 are weight matrices in R𝑎×𝑚 ; 𝑏𝑢 and 𝑏𝑖
refer to bias vectors; and 𝑓𝑢𝑖 ∈ R1×2𝑚 denotes the initial user-item
interactions from the third fusion layer.

3.4 Interaction Function and Rating Prediction
The MLP is essential to model the CF effect to learn meaningful
interactions between users and items. An MLP with multiple layers
implies a higher degree of non-linearity and flexibility. Similar to
the strategy of He et al. [12], SUMMER adopts an MLP with a
tower pattern wherein the bottom layer is the widest while every
succeeding top layer has fewer neurons. A tower structure enables
the MLP to learn more abstractive data features. Notably, we halve
the size of hidden units for each successive higher layer. SUMMER’s
MLP component is defined as follows:

ℎ1 = 𝑅𝑒𝐿𝑈 (𝑓𝑢𝑖𝑊1 + 𝑏1)
ℎ𝐿 = 𝑅𝑒𝐿𝑈 (ℎ𝐿−1𝑊𝐿 + 𝑏𝐿)

(11)

where ℎ𝐿 represents the 𝐿-th MLP layer, and𝑊𝐿 and 𝑏𝐿 pertain
to the 𝐿-th layer’s weight matrix and bias vector, respectively. We
choose the rectified linear unit (ReLU) as the activation function
since it generally yields better performance than other activation
functions [12]. Finally, the MLP’s output is projected to one more
linear layer to produce the predicted rating:

𝑟𝑢𝑖 = ℎ𝐿𝑊𝐿+1 + 𝑏𝐿+1 (12)
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Table 2: The datasets utilized for our experiments.

Dataset #Reviews #Users #Items
Digital Music 64,706 5,541 3,568
Office Products 53,258 4,905 2,420
Patio, Lawn, & Garden 13,272 1,686 962

Table 3: Variants of SUMMER used in our ablation study.

Variant Type Item Encoder User Encoder
SUMMER-1SE Null First Sentence First Sentence
SUMMER-IA-U1 Hybrid Abstractive Summ. First Sentence
SUMMER-IX-U1 Hybrid Extractive Summ. First Sentence
SUMMER-I1-UA Hybrid First Sentence Abstractive Summ.
SUMMER-I1-UX Hybrid First Sentence Extractive Summ.
SUMMER-5RE Null Five Reviews Five Reviews
SUMMER-IA-U5 Hybrid Abstractive Summ. Five Reviews
SUMMER-IX-U5 Hybrid Extractive Summ. Five Reviews
SUMMER-I5-UA Hybrid Five Reviews Abstractive Summ.
SUMMER-I5-UX Hybrid Five Reviews Extractive Summ.
SUMMER-Ext Original Extractive Summ. Extractive Summ.
SUMMER-Abs Original Abstractive Summ. Abstractive Summ.

4 EMPIRICAL EVALUATION
4.1 Research Questions
In this section, we provide the details of our experimental con-
figuration as we aim to answer the following research questions
(RQs):

• RQ1: How does SUMMER’s rating prediction accuracy com-
pare to other state-of-the-art baselines?

• RQ2: To what extent does summarization (as an encoding
mechanism) improve the effectiveness of user and item rep-
resentations?

• RQ3: How are summary-based explanations perceived by
humans in real life?

• RQ4: How do extractive and abstractive representation-
explanations compare in the following:
– RQ4a: Their impact on recommendation performance?
– RQ4b: Their real-life acceptability to users?

4.2 Datasets, Baselines, and Evaluation Metric
Table 2 summarizes the three Amazon datasets1 we utilized in
our experiments. These datasets are 5-core, implying that every
user and every item have a minimum of five reviews [10, 19]. The
ratings across all the datasets are in the range of one to five. We
further divided a given dataset into training, validation, and test sets
using the 80%-10%-10% split. Then, to compare recommendation
performances and validate our model’s effectiveness, the following
state-of-the-art baselines were used:

• DeepCoNN [38]: The first deep collaborative neural net-
work model that is based on two parallel CNNs to jointly
learn user and item features.

1http://jmcauley.ucsd.edu/data/amazon/

• MPCN [28]: Akin to NARRE, MPCN implements a new type
of dual attention for identifying relevant reviews.

• NARRE [3]: Similar to DeepCoNN, it is a neural attentional
regression model that integrates two parallel CNNs and the
review-level attention mechanism.

• NCF [12]: An interaction-based model that is fundamental
in neural recommender systems; the first to introduce the
MLP as the interaction function.

For the evaluation metric, we calculated each baseline’s root
mean square error (RMSE) on the test dataset (𝜏 ). RMSE is a widely
accepted metric for assessing a model’s accuracy and recommenda-
tion performance [27].

𝑅𝑀𝑆𝐸 =

√︄
1
|𝜏 |

∑︁
𝑢,𝑖∈𝜏

(𝑟𝑢𝑖 − 𝑟𝑢𝑖 )2 (13)

4.3 Experimental Settings
For the CF component of SUMMER, we operated an exhausting grid
search on the number of epochs: [1, 30] and latent vector dimension
(𝑚): {128, 200, 220} while fixing the values of the learning rate at
0.006 and number of MLP layers at 4. Moreover, we implemented
NCF and also ran a grid search over the number of epochs: [1, 30]
and latent vector dimension: {128, 200}. For DeepCoNN, MPCN, and
NARRE, we availed the extensible NRRec framework2 and retained
the hyperparameters’ values reported in the framework [18]. We
performed an exhaustive grid search over the number of epochs:
[1, 30] and learning rates: {0.003, 0.004, 0.006}.

All the above-mentioned baselines used the same optimizer,
Adam, which leverages the power of adaptive learning rates dur-
ing training [15]. This makes the selection of learning rates less
cumbersome, leading to faster convergence [3]. Without special
mention, the models shared the same random seed, batch size (128),
and dropout rate (0.5). We selected the model configuration with the
lowest RMSE on the validation set. We then separately trained SUM-
MER’s summarization and rating prediction tasks due to limitations
on hardware resources.

For the extractive summarization layer, we primarily based its
implementation on BERT Extractive Summarizer3 by Miller [20]
using the pre-trained BERTLARGE model. The summary ratio (𝜙)
was set to 0.4. For the abstractive summarization layer, we pat-
terned its design after the original MeanSum4 model of Chu and
Liu [5]. The language model, encoders, and decoders were multi-
plicative LSTMs [17] with hidden unit size of 512, dropout rate of
0.1, word embedding size of 256, and layer normalization [1]. We
also took advantage of the Adam optimizer to train the language
and summarization models with learning rates of 0.001 and 0.0005,
respectively.

2https://github.com/ShomyLiu/Neu-Review-Rec
3https://github.com/dmmiller612/bert-extractive-summarizer
4https://github.com/sosuperic/MeanSum
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Table 4: Recommendation performance comparison. The best RMSE values are boldfaced.

Model Digital Music Office Products Patio, Lawn, & Garden Average RMSE
DeepCoNN 0.8904 0.8410 0.9316 0.8876
MPCN 0.9298 0.8487 0.9362 0.9049
NARRE 0.8915 0.8426 0.9539 0.8960
NCF 1.0822 1.0008 1.2359 1.1063
SUMMER-Ext 0.8831 0.8332 0.9298 0.8820
SUMMER-Abs 0.8917 0.8356 0.9398 0.8890

Figure 2: Performance comparison of SUMMER variants. The left (a) and right (b) figures illustrate the RMSE scores of SUMMER
variants based on 1SE and 5RE ablations, respectively.

5 PREDICTION RESULTS AND DISCUSSION
5.1 Performance Comparison
After conducting our experiments, we found out that SUMMER’s
extractive version is the top-performing model, acquiring the low-
est RMSE scores across all datasets and baselines. This is closely
followed by SUMMER’s abstractive variant, whose performance is
comparable to other baselines. These observations answer RQ1; our
findings prove that integrating summarization in a CF architecture
is effective, subsequently resulting in better representations and
accurate recommendations. Specifically, summarization is helpful
in further refining and producing semantically meaningful features
with finer granularity and fewer redundancies to comprise user and
item embeddings. Notwithstanding, extractive SUMMER appears to
have a better generalization capability than abstractive SUMMER;
this addresses RQ4a.

An interesting trend is that models that take advantage of re-
view information (i.e., DeepCoNN, MPCN, NARRE, and SUMMER)
consistently outperform NCF, the only model based on rating data
alone. This validates the importance of review texts, which are excel-
lent rich information sources for learning user and item properties.
Generally, review-based recommender systems have become more
reliable nowadays in yielding satisfactory and quality prediction
performance.

5.2 Ablation Study
5.2.1 Configuration. In order to examine further the efficacy of

our proposed summarization layer for encoding users and items,
we separately replaced the user’s and item’s summarization layer
with non-summarization encoding approaches (listed below). The
rationale behind these approaches is that to examine better the

perceived overall effect of summarization in CF, we must ensure
that the ablated component is replaced by an encoding that does
not resemble SUMMER-generated summaries.

• First Sentence Encoding (1SE): We chose the first sentence
of the item (user) review set to represent it.We then projected
it to a pre-trained Sentence-BERT model to derive the item
(user) embedding.

• Five Reviews Encoding (5RE): We randomly selected five
reviews from the item (user) review set. We later fed the
concatenated reviews to Sentence-BERT to obtain the em-
bedding of the item (user).

Accordingly, as described in Table 3, we prepared ten other vari-
ants of SUMMER that utilize different combinations of encoding
mechanisms for the user and item components. These are different
from the original variants (i.e., SUMMER-Ext and SUMMER-Abs);
they are non-original and can be categorized into the null vari-
ant or hybrid variant. A null variant, such as SUMMER-1SE and
SUMMER-5RE, completely replaces the summarization layer with
its corresponding encoding mechanism (i.e., 1SE or 5RE). On the
other hand, for a hybrid variant, either the user or item compo-
nent maintains the summarization layer while the other ablated
component employs 1SE or 5RE.

5.2.2 Analysis. The results of our ablation experiments are de-
picted in Figure 2. Completely removing summarization expect-
edly results in the least accurate performances, as evidenced by
SUMMER-1SE and SUMMER-5RE receiving the lowest RMSE scores.
The performance immediately improves even if only either compo-
nent (item or user) takes advantage of summarization. Hence, it is
noticeable that the RMSE values of hybrid variants are significantly
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Table 5: Acceptability comparison between extractive and ab-
stractive summary-level explanations. The best mean values
are boldfaced. The symbol ** indicates that the difference is
statistically significant (at p < 0.05).

Quality Extractive Abstractive
Coherence 3.33 3.27
Focus 3.31 3.27
Grammaticality 3.25 3.20
Non-Redundancy 3.15 3.18
Referential Clarity 3.59 3.16
Usefulness 3.50** 3.20

better than the null variants. Lastly, the full benefits of summariza-
tion are realized when both item and user components utilize our
proposed summarization layer. Across all variants, SUMMER-Ext
and SUMMER-Abs have the two best RMSE scores; this conclusively
answers RQ2.

6 EXPLAINABILITY STUDY
6.1 Listwise Evaluation of Helpfulness
It is intuitive to perform a listwise evaluation (i.e., a ranking-based
analysis) to examine whether explanations generated by SUMMER
are on par with review-level explanations in real life, considering
that the latter have been popular in recommender systems literature.
In this regard, we generated a tuple of explanation texts (SUMMER’s
extractive and abstractive summaries and NARRE’s review-level
texts) for 30 items, totaling 90 explanations to be assessed. For
each item explanation tuple, we instructed four English-speaking
human judges to rank them according to helpfulness. A statement
is considered helpful if it can aid the viewing user both to know a
product better and make a future purchasing (or non-purchasing)
decision. Additionally, we determined the strength of inter-judge
ranking agreement by utilizing Fleiss’ Kappa (𝜅) wherein 0 refers
to a random agreement, and 1 denotes a perfect agreement [2, 14].

Figure 3 shows a clear tendency toward extractive summaries,
ranked first for nearly 60% of items. Review-level explanations
follow (31%), while abstractive summaries are favored least (ranked
first 10% and ranked last 63%). With a fair inter-judge agreement
(Kappa value of 0.25), this highlights the superiority of extractive
summaries in real-life acceptability (RQ3), exceeding review-level
explanations. The lower ranking of abstractive summaries suggests
potential inaccuracies or irrelevancies introduced by the generative
model (partly answering RQ4b).

6.2 Acceptability Comparison
To fully address RQ4b, it is reasonable to conduct a detailed compar-
ison between extractive and abstractive explanations based on their
inherent qualities. In the absence of a ground-truth summary, we
propose assessing the real-life acceptability of explanations based
on the following summarization criteria, measured on a scale of 1
(poor) to 5 (excellent). We adopted the first five qualities from Dang
[6], while we added the sixth dimension of usefulness.

(1) Coherence: Should be well-structured and well-organized.
It should build from sentence to sentence to a coherent body
of information about an item/product/topic.

(2) Focus: Should only contain information that is related to
the rest of the summary.

(3) Grammaticality: No obvious ungrammatical sentences (e.g.,
fragments, missing components) that make the text difficult
to read.

(4) Non-Redundancy: No unnecessary repetition in the sum-
mary.

(5) Referential Clarity: Easy to identify who or what the noun
phrases and pronouns are referring to in the summary.

(6) Usefulness: Provides useful information to help users decide
in making a purchasing decision.

Considering this, we produced a total of 60 item explanations, 30
each from SUMMER’s extractive and abstractive types. We likewise
asked four English-speaking judges to independently evaluate the
explanations according to the earlier-mentioned summarization
criteria, and we ascertained their agreement level by utilizing Fleiss’
Kappa. Furthermore, we employed the 𝑡-test to determine whether
the difference between the two explanation types is statistically
significant for each summarization quality.

Table 5 reveals that extractive explanations outscore abstractive
explanations in five out of six quality metrics. Specifically, they are
most grammatical, coherent, and useful; they also provide the best
focus and clarity. Their strongest aspects are referential clarity and
usefulness. The former has a mean score of 3.59 and a 𝜅 value of
nearly 0.1, indicating a slight agreement between a pair of judges.
The latter has a mean score of 3.50 and a 𝑝-value of about 0.03,
implying that the difference is statistically significant from abstrac-
tive explanations’ usefulness. Interestingly, abstractive summaries
are less redundant than their extractive counterparts (with a mean
score of 3.18).

Overall, these findings demonstrate a strong preference for ex-
tractive explanations over abstractive ones in real-life settings, ad-
dressing RQ4b. Extractive explanations provide clear, well-structured
guidance to help users understand items and make informed pur-
chasing decisions.

7 CONCLUSION AND FUTUREWORK
Wehave successfully implemented SUMMER, a novel summarization-
driven CF model that is both accurate and explainable. By inte-
grating summarization as an encoding mechanism within a CF
architecture, we generate semantically rich user and item repre-
sentations, resulting in competitive recommendation performance.
Our experiments confirm that SUMMER’s accuracy aligns with or
surpasses other state-of-the-art approaches. Moreover, our explain-
ability study demonstrates the real-life favorability of extractive
summary-level explanations.

Nevertheless, our study highlights several avenues for further
research. Expanding human evaluation with a larger pool of judges
and thoroughly analyzing factors contributing to varying inter-
rater agreement offers one valuable direction. Additionally, a deeper
investigation of the accuracy-explainability trade-off is crucial. An-
alyzing specific cases where less helpful explanations might also
impact prediction accuracy could reveal areas for improving both
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Figure 3: Distribution of the judges’ given helpfulness rankings for listwise evaluation.

the informativeness of explanations and the overall model perfor-
mance.
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