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ABSTRACT
A novel approach called ErrgoEngine is presented to enhance pro-
gramming error messages for novice programmers. Current solu-
tions have limitations in providing personalized, interactive, and
domain-specific assistance to address the challenges novice pro-
grammers face in understanding error messages. ErrgoEngine aims
to provide a rich explanation to novice programmers, alleviating
the burden of getting the right answer to their programming error
with minimal intervention. Designed to be language-agnostic and
leverages innovations in program analysis and language tooling,
as well as relevant programming learning theories, ErrgoEngine
uses regular expressions to match the input error message to a cor-
responding error template. It extracts relevant data and generates
an error explanation and bug fix suggestions based on the template
and context. Evaluation showed ErrgoEngine successfully identi-
fied and translated 42 programming errors with high test coverage.
Although weaknesses were identified in semantic analysis and out-
put generation, ErrgoEngine has the potential to simplify learning
for novice programmers of all skill levels. Ongoing work aims to
address these weaknesses and improve the tool’s effectiveness.

CCS CONCEPTS
• Applied computing → E-learning; • Software and its engi-
neering → Software testing and debugging;
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1 INTRODUCTION
Software automation is becoming a vital part of almost every ma-
jor industry nowadays and programming is an essential skill for
students pursuing computing-related courses and is becoming a use-
ful skill for non-tech fields[26]. For those who take programming
courses, known as novice programmers[17], the skill of program-
ming enables them to solve problems and enhances their analytical
and reasoning capabilities. However, programming is a "high-level"
cognitive task[51] and learning proved to be a challenge for many
of the novices. One area of difficulty for novices when it comes
to programming is in addressing programming errors[24, 56, 65]
which requires the development of debugging skills.

Debugging is the process of finding and resolving errors in
software[35]. In this process, the programmer replicates the failure
for two main purposes: fault localization and bug fixing[38]. Fault
localization is about identifying the cause of the failure, which can
be a tedious and time-consuming task in manual processes[62, 64].
However, it is essential for maintaining software quality because the
faster the bug location is identified, the faster it can be removed[2].
Techniques for fault localization include program logging, asser-
tions, profiling[64], and stack-trace analysis[63].

Bug fixing, on the other hand, is the process of preventing fail-
ures by modifying, adding, or deleting code[38]. There are three
approaches: search-based, semantic-based, and template-based[10].
Search-based bug fixing uses search algorithms to automatically re-
place defective code[58] with a solution that meets specific criteria,
such as passing unit tests or satisfying formal specifications[16].
Semantic-based bug fixing analyzes the program’s behavior to gen-
erate patches and constraints that avoid the bug[31], using a con-
straint solver[67]. Template-based bug fixing uses fixing templates
based on corresponding bug identification, which are extracted
from historical data such as bug reports and answers from question-
and-answer websites[33].

Debugging a program, including fault localization and bug fix-
ing, is similar to the processes outlined in Brown and VanLehn’s
repair theory. It is based on the concept that individuals acquire
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procedural skills by attempting to solve problems[23]. Novice pro-
grammers apply the knowledge they have gained from their classes
to resolve issues. If they are successful, they acquire a new approach
to address the error. If not, they encounter an impasse. To over-
come the impasse, individuals may either try again later or choose
to repair their knowledge through a problem-solving process[34].
As they work to identify the source of the impasse, in this case,
programming errors or bugs, they seek to develop a new solution
that may lead to success or present an entirely new impasse[8].

Like programming, debugging is a difficult skill to master[41] as
it requires programmers to constantly use new debugging strategies
as they learn[14]. Proficiency in interpreting result codes, error,
and warning messages of the compiler is essential[48]. A study
found that the majority of students have only fair to satisfactory
performance in program tracing, a method of fault localization[25].
This may be due to fragile knowledge[53], which is described
as knowledge that students may only partially know, have dif-
ficulty harnessing, or be unable to recall[41]. Text-based program-
ming error messages can be helpful, but they often use technical
vocabulary[37] and can be notoriously cryptic, leading to confusion
and discouragement[5]. Error messages may also be inaccurate,
imprecise, and vary between different versions of the compiler
used[40].

The students of a computer studies department at a local in-
stitution in Davao City also encountered issues with debugging.
Researchers conducted an in-person evaluation survey to assess
the students’ current level of programming experience by analyz-
ing and solving programming errors. Three programming errors
were selected and presented to the students based on their cur-
rent programming proficiency. The respondents consisted of fresh-
man students from the CCS department with 59 of 70 (84.3%) of
them identifying themselves as beginners or novices. Of the 59
respondents, 16 of them (27.12%) were able to correctly identify
and produce a correct solution for three programming errors, 12
respondents (20.34%) correctly identified and solved two errors, 12
respondents (20.34%) also correctly identified and solved one error,
1 respondent (1.69%) was unable to both identify and produce a
solution for the errors while the remaining 18 respondents (30.5%)
have varying numbers of identified and solved programming errors.
Notably, 53 of the 59 respondents (89.83%) who correctly identi-
fied and solved the first programming error were less confident
in identifying and solving the remaining errors. Some students
sought help from their peers, while others relied on their integrated
development environments (IDEs) to do fault localization through
program tracing. The results of this evaluation survey highlight
the need for enhanced or improved programming error messages
that are more informative and easier to understand, especially for
beginner and novice programmers.

Several studies have been conducted to improve the understand-
ing of programming error messages. One study found that enhanced
forms of Java error messages reduced the overall number of er-
rors, repeated errors, and created a positive learning experience
for students[4] However, other studies have shown that enhanced
programming error messages did not significantly impact student
learning[13, 54, 68]. This is due to various factors, such as difficul-
ties in typing code[68], improper reporting[54], and not paying
attention[13, 54]. Another concern is the lack of easy to use and

understand debugging tools that could help novice programmers
debug their code more quickly and easily. Traditional debuggers,
such as those found in IDEs, have a steep learning curve[20] be-
cause they assume that the user already has advanced knowledge
and experience with debugging tools[21, 36]. This is also evident
in the use of print statements over IDE debuggers to study the
behavior of the program[6].

To address the issues around programming errors and debug-
ging tools, several studies[15, 19, 21, 32, 49, 57] have employed
various methods and techniques to improve the learning curve
of novice programmers when it comes to fixing errors. An auto-
mated tool called Gauntlet was developed to catch and explain
the top fifty programming errors, both syntax and semantic-based,
in a pre-compiler for student cadets at the United States Military
Academy[15]. Backstop is another tool for enhancing runtime error
messages and debugging logical errors in Java[49]. This tool was
tested on a set of students with little to no programming experience,
and the results showed it was proven effective despite some students
initially finding the output hard to understand. Another tool called
SeeC is developed as a noviced-focused debugging tool prototype
for C programmers that provides runtime error checking[21]. Their
tool uses a localized format string used to generate the explanations
of the error, and a C compiler named Clang for creating mappings
into the program’s respective source code files for rich explanation.
A study by Charles and Gwilliam has developed and implemented
an error explainer tool for use by non-CS students to assist them
in understanding and interpreting Python error messages[19]. The
tool, built as a plugin into an interactive notebook environment,
collects and provides plain English explanations for various error
types, helping students to identify common causes and gain a better
understanding of the error messages. While the paper acknowl-
edged the lack of quantitative improvement, the students found the
tool useful.

Recently, researchers have investigated the use of large language
models (LLMs) to enhance the programming error messages. One
study used OpenAI’s Codex programming model to explain and
to provide fix suggestions for given programming errors[32]. The
model was able to provide comprehensible messages 88% of the time,
with an average rate of correctness at 47%, with improved rates if
"prompt engineering" is employed. Another study conducted by
Sobania investigated the performance of ChatGPT in automatic bug
fixing[57] using a benchmark which consists of small erroneous
Python programs that fit in the dialog system of ChatGPT. The
results showed that ChatGPT successfully solved 19 out of 40 bugs,
compared to 7 bugs fixed by standard program repair methods.
However, ChatGPT required additional information for most of the
bugs in order to solve them, which increased its success rate by
77.5%. Despite the positive results, the researchers noted that the
mental cost of verifying the bug fixes provided by ChatGPT may
outweigh its advantages.

The solutions explored in these studies indicate the possibilities
of analyzing and translating programming error messages, relying
on "hardcoded" predefined templates or rules that use traditional
string matching techniques[19, 21]. However, these methods hinder
extensibility when new types of errors arise or when users want to
add custom support for an error. Additionally, the tools only support
a limited range of programming error types, notably syntax and
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semantic errors. While large language models show promise, they
do not provide accurate explanations due to the lack of contextual
data[32, 57] and face limitations in understanding source codes due
to missing information such as the source code of related files and
the libraries used. Prompt engineering can be employed to over-
come these limitations[59], but it may require multiple attempts
and tricks to overcome token limitations with no guaranteed con-
sistent output[61]. Therefore, these models fall short in offering the
personalized, interactive, and domain-specific assistance necessary
for novice programmers without further intervention.

Newer programming language tooling technologies and analysis
strategies, such as Tree-Sitter[9] and a program-feedback graph
from a self-supervised, program repair neural network[66], have
emerged recently and have the potential to provide a common
approach to programming analysis and translation, making it easier
to deploy or integrate into common software. This would greatly
benefit novice programmers as these tools are more accessible
and user-friendly compared to the tools and programs built from
previous studies[39].

Furthermore, current programming error feedback mechanisms
lack a strong foundation in programming learning theories for
novice programmers[5]. To address these challenges, incorporating
experiential learning theory by Kolb can be beneficial. This the-
ory emphasizes "learning by doing" or a learning process in which
knowledge is gainelective observation, abstract conceptualization,
and active experimentation. By providing novice programmers with
concrete learning through real-world programming error experi-
ences, they can engage in reflective observation and gain insights
into effective debugging strategies. Through abstract conceptual-
ization, they can derive general principles and mental models for
effective bug localization and fixing. Finally, active experimentation
enables programmers to apply their newly formed concepts and the-
ories in practice, refining their debugging skills[30]. This approach
can enhance the understanding of programming error messages
and facilitate the learning process for novice programmers.

Given the identified gaps and opportunities, the researchers
aimed to develop a contextualized programming error analysis
translation engine, named ErrgoEngine, to assist new program-
mers in effectively overcoming commond through experience[12].
It involves a four-stage process: concrete learning, ref debugging
challenges. The engine will use a language-agnostic approach to
enhance error programming messages by leveraging innovations in
program analysis and language tooling as well as applying relevant
programming learning theories. This will provide a rich and help-
ful explanation to novice programmers, alleviating the burden of
getting the right answer to their programming error with minimal
to no intervention. Ultimately, the researchers believe that Errgo-
Engine will simplify the learning process for novice programmers
and programmers of all skill levels, helping them transform into
skilled troubleshooters.

2 APPROACH
2.1 Conceptual Framework
Figure 1 illustrates the process of error analysis and translation.
Upon receiving the input programming error message text from

Figure 1: Conceptual Framework of ErrgoEngine

the compiler / interpreter, it goes through the error analysis and
error translation stages to produce its desired output.

2.1.1 Error Analysis. In this stage, the input error message is
examined and relevant data is extracted into context data. Errgo-
Engine searches for a corresponding error template in its collection
using a regular expression pattern included in each template. Upon
discovering a match, the engine proceeds to context data extraction.
If no match is found, a fallback error template is used instead. Dur-
ing context data extraction, variables from the input error message
are obtained using the same regular expression pattern utilized in
the error template matching process. If stack trace data is available,
it is separately extracted using a specific regular expression pat-
tern defined in the programming language configuration linked to
the matching error template. This process extracts the locations
of the offending files, whose contents are then semantically ana-
lyzed to generate a symbol table containing the program’s symbols
(variables, functions, classes, etc.) using the same programming
language configuration used earlier. The context data, along with
the matched error template, is subsequently forwarded to the error
translation stage.

2.1.2 Error Translation. In the final stages, the error explanation
and the bug fix for the corresponding error are generated using the
error template and the context data. The error explanation is pro-
duced by executing an error explanation function, which accepts
context data and returns a text output. This function can use the
context data to inject values into the error explanation or selec-
tively generate text based on the symbol information or the AST
node structure of the offending code. Once the error explanation
is generated, the bug fix can be produced. A function then accepts
the context data and returns a list of bug fix suggestions based
on the identified error through the error template upon execution.
The newly-generated error explanation and bug fix suggestions are
then compiled and formatted into Markdown, a plain text format
for writing structured documents[1]. The formatted output is sent
back to the user for consumption.

2.2 Context Data
The context data contains crucial information primarily used for
the error translation stage and portions of the error analysis stage.
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Figure 2: Flow diagram of the BugBuddy application

It provides guidance and personalization for the generated out-
put. The data includes information extracted from the input error
message, such as variables and stack trace locations. Additionally,
it contains data extracted from semantic analysis, including files,
abstract syntax trees (ASTs), and the symbol table containing the
extracted symbol information.

2.3 Language-agnostic Approach
ErrgoEngine is able to identify errors and source codes written
in any programming language through a supported programming
language parser and an additional configuration file for that spe-
cific language. The supported programming parsers are the ones
that were generated from parser generators such as ANTLR[52]
and Yacc[27] as the generated parsers use common data structures
that are easy to traverse through the provided mechanisms [3]. In
this case, ErrgoEngine used Tree-Sitter parser as the library for
parsing and programming languages with Tree-Sitter support are
automatically supported.

In addition, a separate language configuration file is also cre-
ated which are linked into the error templates of their respective
programming errors. It contains a set of operations and variables
needed in order to produce additional information helpful in identi-
fying errors such as functions for converting stack trace positions,
tracking dependency imports, and capturing symbol information
as part of the semantic analysis.

2.4 Library / Application Development
ErrgoEngine is a software component library that can be used on a
variety of similarly-scoped applications. To test its functionality in
the real-world scenario, the researchers developed a purpose-built
application called BugBuddy. Shown in Figure 2 and 3, BugBuddy
is a console-based server application and editor extension that
enhances programming error messages within the user’s preferred
text editor. It consists of multiple components:

(1) ProgramExecutor - monitors incoming programming error
messages via the executed program’s standard error output
pipe (STDERR). Error messages are sent to the daemon server
for processing.

Figure 3: BugBuddy editor example user interface

(2) Daemon Server - an independent, background process that
acts as a main hub for receiving, processing, and dispatch-
ing output generated by ErrgoEngine. Communication be-
tween clients (e.g. program executors and language servers)
is done via the JSON Remote Procedure Call (JSON-RPC)
protocol[28]

(3) Language Server - receives and dispatches the output from
the daemon server to the supported text editors and IDEs. It
communicates with editors via Microsoft’s Language Server
Protocol (LSP)[44].

(4) Editor Extension - acts as a client for receiving and display-
ing the output from the language server to the text editor
diagnostics to be displayed to the user.

The researchers chose the Go programming language[18] for de-
veloping ErrgoEngine library and BugBuddy server due to its
performance, security, and package availability [50, 60]. Visual
Studio Code was used for development and testing the editor exten-
sion, known for its flexibility, ease of development via its extension
API[43], and compatibility with LSP[45]. TypeScript, a superset
of JavaScript with type annotations[46], was used to create the
extension for VSCode.

3 EVALUATION
In order to provide initial insights on the usability of ErrgoEngine,
the following objectives were established:

RQ1: Test Programs and Error Templates Development.
What set of test programs and error message templates or rules
should be developed to thoroughly evaluate the performance of the
engine?

RQ2: Contextualization Mechanism Design. How can a
mechanism be designed and implemented to enable the contex-
tualization of error messages by the translation engine?

RQ3: Real-world Use. How can the ErrgoEngine library and
application be integrated with existing development tools and envi-
ronments to enhance its accessibility and ease of use for program-
mers?
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3.1 RQ1: Test Programs and Error Templates
Development

3.1.1 Data Gathering. The researchers collected data from pre-
vious studies and articles to determine the programming errors
when creating error templates. First, the researchers identified the
programming languages that would be used in this study. Based
on the current programming curriculum used by the computer
studies department, the researchers chose the Java programming
language. In addition to Java, the researchers also included the
Python programming language as a sample implementation to test
the language-agnostic capabilities of ErrgoEngine.

Afterwards, studies and articles collecting the most common pro-
gramming errors of Java[4, 7, 11, 42, 47, 49] and Python[22, 29, 55,
68] programming languages from students and developers were se-
lected, ensuring a comprehensive coverage of programming errors
made from individuals with varying levels of experience. Errors
that do not output an error message such as logical programming
errors were excluded. Upon collection, the researchers identified 49
programming errors which consisted of 43 programming errors for
Java and 6 programming errors for Python. The reason for the low
number of supported programming errors for Python compared to
Java is due to only it being a test implementation.

3.1.2 Test Programs. For each identified programming error, the
researchers utilized ChatGPT to generate the program code that
would reproduce the error. The code was then verified running it on
a language interpreter. In some cases, modifications were also made
to the code to ensure that the exact programming error was thrown.
Actual error messages from the interpreter were also extracted
for the error template design. Upon running the test programs,
the researchers discovered that some errors, particularly the Java
expected and cannot find symbol programming errors, produced
similar messages. These errors were merged with other similar
errors and kept as additional test cases for testing. As a result, the
number has been reduced to 42 programming errors.

3.1.3 Error Template Design. The error template format encap-
sulates essential components which consists of an error name, a
regular expression pattern for error message matching, and crucial
functions for detecting error positions, generating explanations,
and crafting bug fixes. In addition, custom regular expression pat-
terns for error message and stack trace formats were added to
handle such situations found in dynamic interpreted languages
that provide different error message and stack trace formats for
compile-time and runtime errors.

3.1.4 Translated Error Output Design. Shown in Figure 4 , the
Markdown-based output consists of an error explanation and bug fix
suggestions. Error explanation offers a brief description of the error,
accompanied with the code snippet pinpointing the exact location
of the error. Following this, bug fix suggestions provide one or more
recommendations, each equipped with step-by-step instructions
and a visualized code snippet of the fix to guide developers in
resolving the identified issue.

3.1.5 Testing. The effectiveness in terms of detection and out-
put generation was evaluated through unit testing. The test cases

Figure 4: Sample engine-translated output for Java’s private
access error

Java Python Total
Implemented test cases 44 6 50
No. of passed tests 36 (81.81%) 5 (83.33%) 41 (73.21%)
No. of failed tests 1 (2.27%) 1 (16.67%) 2 (3.57%)
No. of skipped tests 7 (15.9%) 0 7 (15.9%)
Code coverage 92.7% 97.4% 95.05% (avg)
Table 1: Error template unit testing statistics summary

consisted of input test programs, extracted programming error mes-
sages, and the expected engine-generated output. Each identified
error was given one test case. To ensure comprehensive cover-
age, some programming errors were also given additional test cases.
These test cases were taken from the similar errors identified earlier,
as well as new test cases that addressed scenarios with unexpected
bugs. Based on the results shown in Table 1, 50 test cases were
created in total with 44 (78.57%) test cases created for the Java pro-
gramming language while 6 (10.71%) test cases were created for
Python. During the test, 44 (79.55%) test cases were able to pass
while there were 2 test cases (3.57%) that failed and 7 test cases
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Component Test Passed /
Failed / Skipped

Code Coverage

Initial context data
extraction

6/0/0 39%

Error stack trace
detection

4/0/0 25.96%

Semantic Analysis -
File Opening

5/0/0 37.93%

Semantic Analysis -
Symbol Collection

1/0/0 - Java
1/0/0 - Python

33.3% - Java
34.2% - Python

Table 2: Contextualization mechanism implementation unit
testing results

(15.9%) that were skipped due to missing standard library symbol
information and lack of implementation.

3.1.6 Programming Error Coverage. The researchers were not
able to fully implement all of the identified programming errors.
29 of the 36 Java programming errors (80.55%) and 5 of 6 Python
programming errors (83.33%) were successfully implemented. In
total, there are 34 of 42 programming errors (80.95%) that are cur-
rently implemented and supported by ErrgoEngine. Apart from the
reasons mentioned earlier, the incomplete implementation support
was also due to its inability to process error messages of the same
programming error in different versions of the same programming
language which was the case for Java. Another obstacle was in
bug fixing in which the lack of code formatting information would
make ErrgoEngine provide inaccurate fixes that involve adding
characters or braces for example.

3.2 RQ2: Contextualization Mechanism Design
3.2.1 Implementation Testing. The researchers employed unit

testing into the implementations of its contextualization mecha-
nismwhich includes initial context data extraction, error stack trace
extraction, and semantic analysis which is further divided into file
opening and symbol collection tests. The initial context data ex-
traction process demonstrated strengths in accurately extracting
relevant information from error messages using regular expres-
sions and passing all tests with a test coverage of 39%. However,
the test coverage could be improved to ensure more comprehen-
sive testing. The error stack trace extraction process also showed
strengths in accurately extracting data from raw stack trace text
and handling partially invalid inputs, but the test coverage of 25.96%
was lower than that of the initial context data extraction process.
The semantic analysis process revealed weaknesses in the system,
including issues with feature parity of symbols collected for each
supported language, limited support of the importing dependen-
cies implementation, and inconsistencies in the order of outputs
generated.

3.2.2 Error Position Adjustment using Context Data. Added at
the end of the error analysis process, it is achieved by introducing
an additional property into the error template. This addition is a
crucial part as stated in the repair theory as the added process
dictates where the error in the code occurred, utilizing information
gathered during the preceding steps of error analysis. It provided

Test Case Test Passed /
Failed / Skipped

Test Coverage

Explanation generator 13/0/0 95.5%Bug fix Generator 16/0/0
Output Generator 8/0/0 84.3%
Table 3: ErrgoEngine error translation testing results

Component Test Passed /
Failed / Skipped

Test Coverage

Program Executor 4/2/0 93.8%
Daemon Server 15/0/0 66.1%

Information Logger 17/0/0 85.3%
Language Server 13/0/0 53.6%

Table 4: BugBuddy server unit testing results

enhanced fault localization especially in errors that lack column
position data and improved code organization and clear separation
of concerns in terms of error template implementation.

3.3 RQ3: Real-world Use
3.3.1 Unit testing. The researchers conducted unit testing to

evaluate the performance and reliability of the ErrgoEngine library
and BugBuddy application. For ErrgoEngine, the researchers con-
centrated on testing the components involved in the error transla-
tion stage, as error analysis had already been addressed during the
error template and contextual mechanism tests. The error trans-
lation stage consists of three main components: the explanation
generator, bug fix generator, and output generator.

The explanation generator and bug fix generator has shown
strengths in handling their respective tasks, with high test coverage
rates of 95.5%. However, the output generator component showed
a potential weakness, with a lower test coverage of 84.3%. While
all 8 test cases were successfully passed, the lower test coverage
suggests that there may be some scenarios that were not tested.
Further testing may be needed to ensure the robustness of the
output generator component. Overall, the high test coverage rates
for the explanation generator and bug fix generator components
indicate their reliability in generating informative explanations and
bug fixes, but more work may be needed to improve the output
generator component.

As for BugBuddy, the testing process is divided into server appli-
cation tests and extension tests. For the server application tests, the
researchers evaluated the core components of BugBuddy, which
include the program executor, daemon server, information logger,
and language server.

Results in table 4 reveal both strengths and weaknesses in these
components. The program executor had a high code coverage of
93.8% but only a 66.67% pass rate due to issues with processing
multiple programming errors. The Daemon Server had a perfect
pass rate of 100% but a relatively low code coverage of 66.1%. The
Information Logger had a high pass rate of 100% and a code cov-
erage of 85.3%, but there were still areas of the code that were
not tested. The Language Server had a pass rate of 100% but a
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very low code coverage of 53.6%, indicating that more testing is
needed to ensure its robustness and accuracy. Overall, while the
testing results demonstrate the effectiveness and reliability of the
BugBuddy framework’s components, there are still areas that need
improvement, particularly in terms of code coverage and process-
ing multiple programming errors. The researchers plan to address
these weaknesses and continue refining the framework to improve
its overall performance.

The BugBuddy extension tests, on the other hand, were all suc-
cessful, including the connection from the server to the editors and
receiving of translated error outputs. However, it is worth noting
that the tests only validated the core functionalities of the exten-
sion, and further testing may be necessary to ensure its suitability
for a wider range of projects and programming languages. Overall,
the successful tests highlight the strengths of the extension as a
user-friendly and robust interface for BugBuddy.

3.3.2 Initial usability test. Another test was conducted to evalu-
ate the efficacy and user experience of the BugBuddy application.
The assessment consists of three (3) student participant testers
which were all given a set of sample programs that to use to test
in terms of setup, functionality, and overall usability. Results in-
dicated a generally positive reception among participants. The
setup process was straightforward, with participants successfully
installing and configuring both the BugBuddy application and its
accompanying extension within their preferred text editors. It also
demonstrated accurately in capturing and translating programming
error messages during code execution, thereby assisting users in
pinpointing errors and providing relevant explanations and sug-
gestions for resolution. Participants found the explanations and
suggestions to be concise, comprehensible, and beneficial for en-
hancing their understanding of programming concepts.

However, there are limitations of the assessment. The controlled
environment and the modest sample size may not encapsulate the
full spectrum of user interactions with BugBuddy in real-world
programming environments. While the initial usability assessment
offers valuable insights into BugBuddy’s user experience, a more
comprehensive performance evaluation is yet to be done right after
the usability tests.

4 CONCLUSION
The evaluation of ErrgoEngine provided valuable insights into its
usability and effectiveness. The researchers successfully developed
a set of test programs and error templates for 42 programming er-
rors, which were reduced from 49 after merging similar errors. The
contextualization mechanism was designed and implemented, en-
abling the translation engine to provide more accurate and relevant
error messages. The ErrgoEngine library and BugBuddy application
were integrated with existing development tools and environments,
enhancing their accessibility and ease of use for programmers. The
unit testing results showed that the error template and contextual
mechanism tests were successful, with high test coverage rates.
However, there were some weaknesses identified in the semantic
analysis process, which will need to be addressed in future work.
The error translation stage also demonstrated strengths in handling
its tasks, with high test coverage rates for the explanation generator

and bug fix generator components. However, the output genera-
tor component showed potential weaknesses, and further testing
may be needed to ensure its robustness. The initial evaluation re-
sults also shown it was able to capture errors and is easy to setup.
Overall, the evaluation results suggest that ErrgoEngine has the
potential to be a useful tool for improving the debugging process
for programmers.
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