
Formal Verification of Shortest Job First Scheduling Algorithm
in Coq

Jian Lawrence Luteria
University of the Philippines

jgluteria@up.edu.ph

Earl Wilbur Nogra
University of the Philippines

eanogra@up.edu.ph

Andrei Tiangco
University of the Philippines

altiangco@up.edu.ph

Alfonso B. Labao
University of the Philippines

ablabao@up.edu.ph

Henry N. Adorna
University of the Philippines

hnadorna@up.edu.ph

ABSTRACT
Schedulers play a critical role in operating systems, particularly in
real-time systems where timing guarantees are vital. This paper
formally verifies the non-preemptive Shortest Job First (SJF) sched-
uling algorithm using the Coq proof assistant. Our focus is on two
key properties: permutation (ensuring each job appears once in the
schedule) and sortedness (scheduling jobs with the shortest burst
times first). Through Coq verification, we establish the SJF algo-
rithm’s reliability. While this work explores the non-preemptive SJF
variant, our methodology can extend to more complex scheduling
algorithms and real-world scenarios with dynamic job arrivals and
preemption capabilities.

KEYWORDS
Formal verification, correctness, scheduling, operating system

1 INTRODUCTION
An operating system (OS) serves as a fundamental software layer
that manages computer hardware and provides a platform for vari-
ous applications. Central to the functioning of an OS is the sched-
uler, which determines the allocation of the CPU to different pro-
cesses [12]. Scheduling is the process of efficiently managing and
prioritizing tasks in a computing system.

Different scheduling algorithms, such as First-In-First-Out (FIFO)
and Round Robin, contribute to this process by implementing dis-
tinct strategies for task execution. FIFO follows a first-come, first-
served approach, while Round Robin ensures fair CPU time distri-
bution by allocating fixed time slices to each process in a circular
manner.

Another common algorithm used for scheduling is the Shortest
Job First (SJF) algorithm, which selects the waiting process with the
smallest execution time to execute next [11]. It is particularly suit-
able for jobs with predetermined run times [10]. In this approach,
each process in the ready queue is executed based on its shortest
burst time, minimizing waiting times for individual processes and
consequently reducing the overall average waiting time.

As operating systems evolve into complex programs, ensuring
their adherence to intended functionality becomes crucial [4]. Ku-
mar et al. [7] highlighted the complexity of safety-critical systems
such as nuclear power plant control software, emphasizing the ne-
cessity to model these systems prior to implementation. Similarly,
Juvva K. [5] emphasized the crucial nature of timely processing in
real-time systems such as air traffic control, stating that “a missed

deadline in hard real-time systems is catastrophic”. These case stud-
ies reinforce the need of a verified process scheduling algorithm to
minimize the risk of failure and enhance system safety.

The method of formal verification can be used to provide high
assurance to critical software [4, 6]. It involves rigorously proving
that a system accords with its formal specifications or properties
through the use of automated tools. The proof assistant Coq pro-
vides a formal language for expressing logical statements and a
mechanism for constructing machine-checked proofs [13]. It en-
sures elimination of human errors and comprehensive consideration
of all pertinent cases.

Formal verification has ensured reliability across the domain of
scheduling and algorithm design [3, 8]. A recent formal correctness
proof in Coq focused on verifying a similar scheduling algorithm
via the Earliest Deadline First (EDF) scheduler working in real-time
systems [14]. The proof methodology is organized into distinct mod-
ules, addressing aspects such as the election function, which governs
the selection of the next task to be scheduled based on certain crite-
ria; the driver or backend code, responsible for the main execution
of the scheduling algorithm; and assumptions, which encompass
the foundational conditions crucial for the correct functioning of
the scheduler. The authors arguably become the first to showcase
a formally proved correct implementation of an EDF scheduler, a
methodology they assert to be "general enough to be applied to
other schedulers or other types of system code".

In another case study, Bedarkar et al. [1] verified the response-
time analysis of First-In First-Out (FIFO) scheduling in Coq, show-
casing the feasibility of formal verification in the domain. Their
findings emphasize the importance of domain-specific libraries such
as PROSA. This reinforces the idea that formal verification is not
only achievable but efficient for real-time scheduling theory.

In recent years, formal verification has gained prominence as
a reliable method for validating system correctness. This paper
addresses the challenge of ensuring correctness in systems and
critical software by leveraging formal verification techniques. The
specific focus of this paper is to formally verify the SJF algorithm
using the functional programming language in Coq.

1.1 Contributions
This study addresses the growing need for assurance in operat-
ing system scheduling, particularly for safety-critical applications
where timing guarantees are essential. By employing the Coq proof
assistant, we present a formal verification of a non-preemptive
SJF scheduling algorithm. This formal approach mathematically

PCSC2024, May 2024, Laguna, Philippines Luteria et al.

verifies the algorithm’s correctness. This work thus contributes
to the field of reliable scheduling by establishing a methodology
for the SJF algorithm’s behavior, offering valuable insights for the
development and verification of more complex scheduling policies.

2 BACKGROUND
This study explores the formal verification of the SJF scheduling
algorithm, specifically its correctness using Coq. The concept of
correctness pertains to the subproperties of permutation and sort-
edness.

(1) permutation: the exact correspondence of jobs in the output
set with those in the input set

(2) sorted: the actual intended behavior of the algorithm, i.e. the
ascending order of burst times in the scheduled jobs

Real-world scheduling implementations must contend with factors
such as context switching overhead, which incurs additional time
for the processor to switch between tasks [9]. However, to simplify
the analysis and focus on the core principles of SJF, we assume
negligible time for context switches. Additionally, the verification
of the algorithm assumes that all incoming tasks arrive at time t =
0 with potentially same burst times. Lastly, this verification process
is conducted in an offline mode, where process data is provided in
predefined batches rather than in real-time.

3 METHODOLOGY
We detail the formalization of the SJF algorithm by defining the
algorithmic steps and properties using Coq’s syntax with natural
language correspondences.

An informal representation of the SJF scheduling algorithm
serves as the preliminary step in our methodology. The use of
a pseudocode offers a high-level, human-readable description of the
algorithm’s logic, enabling clear comprehension of its operational
steps [2]. This pseudocode serves as a blueprint for the subsequent
translation of the algorithm into the Coq proof assistant as shown
in Figure 1. Through this translation process, we are able to encode
the algorithm’s logic into Coq.

3.1 Formalization of SJF Algorithm
Definition of Jobs. We begin by defining a job data type that encap-
sulates the essential properties of a job, including its ID and burst
time. Hereafter, the list of jobs coming in and out of the scheduler
is referred to as joblistwhich denotes a sequence of job elements,
building upon Coq’s built-in list structure.

Inductive job : Type :=
| taskj (id : nat) (burst_time : nat).

Definition joblist := list job.

SJF Scheduler. We define the SJF scheduler function, which takes a
list of jobs as input and produces a sorted list according to ascending
burst times. This function employs the insertion sort subroutine,
ensuring that shorter jobs are prioritized over longer jobs.

Fixpoint insert_job (j : job) (l : joblist) :=
match l with
| nil => j :: nil
| h :: t => if leb (get_burst j) (get_burst h)
then j :: h :: t else h :: insert_job j t

end.

Fixpoint sjf (lst : joblist) : joblist :=
match lst with
| nil => nil
| h :: t => insert_job h (sjf t)
end.

3.2 Correctness Proof of SJF Algorithm
The correctness proof of the algorithm is subdivided into proving
its permutation and sorted properties.
Permutation Property. We prove that applying the SJF scheduler
function to a list of jobs results in a permutation of the original list.
This property ensures that the scheduler produces a valid schedule
without discarding or duplicating jobs.

Lemma 3.1. For all 𝑥 and 𝑙 , the permutation of inserting 𝑥 into list
𝑙 is equivalent to 𝑥 followed by the result of inserting 𝑥 into the rest
of the list.

Proof. We prove by induction.
Base case: If 𝑙 is empty, the permutation of inserting 𝑥 into an
empty list is 𝑥 followed by the empty list itself, which is reflexive.
Inductive case:

• If the burst time of 𝑥 is less than or equal to the burst time
of the first element of 𝑙 , then inserting 𝑥 into 𝑙 results in the
permutation being the same as the original list.

• Otherwise, if the burst time of 𝑥 is greater than the burst time
of the first element 𝑎 of 𝑙 , then the permutation of inserting
𝑥 into 𝑙 is equivalent to swapping 𝑥 with 𝑎, then inserting 𝑥
into the rest of the list.

□

Lemma insert_perm: forall x l, Permutation
(x :: l) (insert_job x l).
Proof.

induction l.
- simpl. apply Permutation_refl.
- simpl. bdestruct (leb (get_burst x)
(get_burst a)).

++ apply Permutation_refl.
++ assert (R: Permutation (x :: a :: l)
(a :: x :: l)).

{ apply perm_swap. }
rewrite -> R. apply perm_skip. apply IHl.
Qed.

With the aid of the Permutation module from Coq’s standard
library, the lemma insert_perm is provided to inductively show
that inserting a job into a list preserves the permutation of the list
elements. In the base case, when the list is empty, the lemma trivially
holds as inserting a job into an empty list results in a singleton list,
which is permutation-equivalent to itself. For the inductive step,
when the list contains elements, the lemma utilizes the bdestruct
tactic to analyze whether the burst time of the job to be inserted is
less than or equal to the burst time of the first element in the list. If
this condition holds, the lemma again trivially holds as the insertion

Formal Verification of Shortest Job First Scheduling Algorithm
in Coq PCSC2024, May 2024, Laguna, Philippines

// Initialize variables
ready_queue <- queue for processes ready

to execute
current_process <- None
// Sort the ready queue from its shortest

burst time to longest burst time
through

// insertion sort
for j <- 2 to length of ready queue do

key <- ready_queue[j]
i <- j - 1
while i > 0 and ready_queue[i] > key

do
ready_queue[i + 1] <-

ready_queue[i]
i <- i - 1

end while
ready_queue[i + 1] <- key

end for

Fixpoint insert_job (j : job) (l : joblist) :=
match l with
| nil => j :: nil
| h :: t => if leb (get_burst j) (get_burst

h) then j :: h :: t else h ::
insert_job j t

end.

Fixpoint sjf (lst : joblist) : joblist :=
match lst with
| nil => nil
| h :: t => insert_job h (sjf t)
end.

Figure 1: Side by side comparison between pseudocode and Coq implementation of SJF algorithm

operation does not alter the relative order of elements. However, if
the condition is false, the lemma utilizes the perm_swap lemma to
swap the positions of the job to be inserted and the first element in
the list, establishing a permutation between the list before and after
the insertion operation. Finally, the lemma recursively applies the
induction hypothesis to the remaining elements of the list, ensuring
that the permutation property is preserved throughout the insertion
process.

Lemma 3.2. For any job 𝑎, and joblists 𝑥 and𝑦, if 𝑥 is a permutation
of 𝑦, then inserting 𝑎 into 𝑥 yields the same permutation as inserting
𝑎 into 𝑦.

Proof. We prove by cases.
(1) If the lists 𝑥 and 𝑦 are the same, inserting 𝑎 into both lists

results in the same list.
(2) If 𝑥 is a permutation of 𝑥0 and 𝑥0 is a permutation of 𝑦, then

inserting 𝑎 into 𝑥 is equivalent to inserting 𝑎 into 𝑥0 twice.
(3) If 𝑥 is obtained from 𝑥0 by swapping two elements and 𝑥0

is a permutation of 𝑦, then inserting 𝑎 into 𝑥 is equivalent
to swapping 𝑎 with those two elements in 𝑦, followed by
inserting 𝑎 into the rest of the list.

(4) If 𝑥 is obtained from 𝑥0 by swapping two elements and 𝑥0 is
obtained from 𝑦 by swapping two different elements, then
inserting 𝑎 into 𝑥 is equivalent to inserting 𝑎 into 𝑥0 followed
by applying the same swaps.

Thus, in all cases, inserting 𝑎 into 𝑥 yields the same permutation as
inserting 𝑎 into 𝑦. □

Lemma lem2 : forall a x y, Permutation x y ->
Permutation (insert_job a x) (insert_job a y).
Proof.

intros. simpl. inversion H.
- apply Permutation_refl.

- simpl. bdestruct (leb (get_burst a)
(get_burst x0)).
+ apply perm_skip. apply perm_skip. apply H0.
+ apply perm_skip. rewrite <- insert_perm.
rewrite <- insert_perm. apply perm_skip.
apply H0.

- rewrite <- insert_perm. rewrite <-
insert_perm.
rewrite -> H0. rewrite -> H1. apply perm_skip.
apply H.
- rewrite <- insert_perm. rewrite <-
insert_perm.
apply perm_skip. apply H. Qed.

Another lemma, lem2, establishes that inserting a job into two
permutation-equivalent lists results in lists that are also permutation-
equivalent. The proof begins by applying induction on the permuta-
tion between the two lists. In the base case, where the permutation
is reflexivity, the lemma trivially holds as inserting a job into lists
that are already permutation-equivalent yields lists that remain
permutation-equivalent. For the inductive steps corresponding to
transitivity and symmetry of permutations, the lemma employs
the insert_perm lemma to ensure that inserting a job into the
corresponding lists preserves their permutation equivalence. Ad-
ditionally, when the permutation involves swapping adjacent el-
ements, the lemma utilizes the perm_skip tactic to insert the job
while maintaining the permutation property.

Theorem 3.3. For any joblist 𝑙 , 𝑙 is a permutation of (sjf 𝑙).

Proof. We prove by induction.

Base Case: If the list 𝑙 is empty, then 𝑙 is a permutation of itself,
which is reflexive.

PCSC2024, May 2024, Laguna, Philippines Luteria et al.

Inductive Case: If 𝑙 is obtained by inserting an element into
the list 𝑙0 and 𝑙0 is a permutation of (sjf 𝑙0), then 𝑙 is also a
permutation of (sjf 𝑙).

By induction hypothesis, 𝑙0 is a permutation of (sjf 𝑙0). Then, by
Lemma lem2, inserting an element into 𝑙0 yields the same permuta-
tion as inserting it into (sjf 𝑙0). Hence, 𝑙 is a permutation of (sjf 𝑙).
Thus, for all cases, 𝑙 is a permutation of (sjf 𝑙). □

Theorem sjf_perm: forall l, Permutation l (sjf l).
Proof.
intros. induction l.
- simpl. apply Permutation_refl.
- simpl. rewrite -> insert_perm. apply lem2.
apply IHl. Qed.

Now we prove the permutation property through induction: in
the base case, it demonstrates that applying the SJF scheduler to
an empty list results in the identity permutation. In the inductive
step, the proof utilizes the insert_perm lemma and recursively
applies the induction hypothesis to establish the preservation of
permutation when scheduling non-empty lists.
Sorted Property. We prove that the sorted list produced by the SJF
scheduler satisfies the SJF criteria, wherein jobs with shorter burst
times precede those with longer burst times.

Inductive sorted : joblist -> Prop :=
|sorted_nil : sorted []
|sorted_1 : forall x, sorted [x]
|sorted_cons : forall x y l, get_burst x <=
get_burst y -> sorted (y::l) -> sorted (x::y::l).

First we define the concept of a sorted list of jobs within Coq,
inductively defined by the sorted predicate. This predicate asserts
that a list of jobs is sorted if it satisfies one of three conditions: either
it is an empty list, denoted by sorted_nil; it contains a single job,
represented by sorted_1; or for any two consecutive jobs x and
y along with the remaining list l, if the burst time of job x is less
than or equal to that of job y, and the rest of the list l, is also sorted,
then the entire list consisting of x, y, and l is considered sorted.

Lemma 3.4. For any job𝑎 and any joblist 𝑙 , if 𝑙 is sorted in ascending
order of burst times, then inserting job 𝑎 into 𝑙 while preserving the
sorted order results in a new sorted list.

Proof. We begin by induction on the list 𝑙 .
Base Case: When 𝑙 is an empty list, inserting 𝑎 creates a sin-

gleton list containing only 𝑎, which is trivially sorted.
Inductive Step: Suppose 𝑙 is non-empty and consists of a head

job 𝑥 and a tail list of jobs 𝑙 ′. We assume that inserting 𝑎 into
𝑙 ′ while preserving the sorted order yields a new sorted list.

Now, we consider two cases based on the burst time comparison
between 𝑎 and 𝑥 :

• If the burst time of 𝑎 is less than or equal to the burst time of
𝑥 , then 𝑎 should be inserted before 𝑥 to maintain the sorted
order. We insert 𝑎 at the beginning of 𝑙 and recursively apply
the induction hypothesis to the tail list 𝑙 ′.

• If the burst time of 𝑎 is greater than the burst time of 𝑥 , we
continue recursively with the induction on the tail list 𝑙 ′.

□

Lemma insert_sorted : forall a l, sorted(l) ->
sorted (insert_job a l).
Proof.

intros a l S. induction S; simpl.
+ apply sorted_1.
+ bdestruct (leb (get_burst a) (get_burst x)).

- apply sorted_cons.
++ apply H.
++ apply sorted_1.

- apply sorted_cons.
++ lia.
++ apply sorted_1.

+ bdestruct (leb (get_burst a) (get_burst x)).
- apply sorted_cons.

++ apply H0.
++ apply sorted_cons.

-- apply H.
-- apply S.

- bdestruct (leb (get_burst a) (get_burst x)).
++ bdestruct (leb (get_burst a) (get_burst y)).

-- apply sorted_cons.
+++ lia.
+++ apply sorted_cons.

---- apply H2.
---- apply S.

-- lia.
++ bdestruct (leb (get_burst a) (get_burst y)).

-- apply sorted_cons.
+++ lia.
+++ apply sorted_cons.

---- apply H2.
---- apply S.

-- apply sorted_cons.
+++ apply H.
+++ simpl. unfold insert_job in IHS.
bdestruct (leb (get_burst a)
(get_burst y)).

----- lia.
----- apply IHS. Qed.

Next we define the insert_sorted lemma, which states that in-
serting a job into a sorted list while preserving its sorted order
results in another sorted list. The proof of this lemma is carried out
through induction on the input job list. In the base case, when the
input list is either empty or consists of a single job, the lemma triv-
ially holds as inserting a job maintains the sorted property. For the
inductive step, we consider the case where the input list contains
multiple jobs, and we demonstrate that inserting a new job into this
list while preserving its sorted order ensures that the resulting list
remains sorted. This proof involves utilizing boolean destruction
or the bdestruct tactic to handle cases involving comparisons of
burst times between jobs.

Theorem 3.5. For any joblist 𝑙 , the schedule generated by (sjf 𝑙)will
be sorted.

Formal Verification of Shortest Job First Scheduling Algorithm
in Coq PCSC2024, May 2024, Laguna, Philippines

Proof. Base case: If the list 𝑙 is empty, there’s nothing to sort,
so it is trivially considered sorted.

Inductive case:
• Assume that when applying the sjf function to a joblist 𝑙 , the
resulting schedule will be sorted. In other words, (sorted (sjf
𝑙)) is true.

• The 𝑠 𝑗 𝑓 function schedules jobs in accordance to their burst
times. It needs to be proven that when job 𝑎 is inserted into
𝑙 , the overall schedule remains sorted. Through using the
lemma insert_sorted, this shows that the entire schedule
with the job 𝑎 inserted remains sorted.

□

Theorem sjf_sorted: forall l, sorted (sjf l).
Proof.

intros. simpl. induction l.
- simpl. apply sorted_nil.
- simpl. apply insert_sorted. apply IHl. Qed.

As in the permutation proof, we now verify through induction that
that the SJF algorithm produces a sorted list of jobs according to
ascending burst times. In the base case, it establishes that the sched-
uler produces a sorted list when applied to an empty list via the
sorted_nil case. In the inductive step, the proof simplifies the list
and recursively applies the insert_sorted lemma, which ensures
that inserting a job into a sorted list maintains its sorted property.
Correctness Property. Building upon the individual proofs of per-
mutation and sortedness, we define a predicate is_sorted_perm
that captures both properties for the given scheduling function.
This predicate asserts that for any input list of jobs, applying the
function results in a permutation of the original list and produces a
sorted list according to the SJF criteria. By unifying these properties
into a single theorem sjf_correct, we formally verify that the
SJF scheduler satisfies both permutation and sorted requirements
simultaneously.

Theorem 3.6. Asserts that the sjf function is correct in the sense
that it produces a schedule that fulfills two requirements:

(1) Theorem 3.3: All jobs from the original list are included in the
schedule exactly once. There are no missing or duplicate jobs.

(2) Theorem 3.5: The jobs in the schedule are ordered by their burst
times, with the shortest jobs scheduled first.

Proof. 𝑠 𝑗 𝑓 _𝑝𝑒𝑟𝑚 guarantees the permutation property, and
sjf_sorted guarantees the sortedness property. By applying these
theorems, we establish that the sjf function satisfies both require-
ments for a correct SJF implementation. □

Definition is_sorted_perm (f : joblist -> list
job) :=forall al, Permutation al (f al) /\
sorted (f al).

Theorem sjf_correct: is_sorted_perm sjf.
Proof.

unfold is_sorted_perm. intros al.
split.

+ apply sjf_perm.
+ apply sjf_sorted.
Qed.

4 DISCUSSION
The methodology outlined utilizes the Coq proof assistant to for-
mally verify the correctness of a non-preemptive SJF scheduling
algorithm. This approach offers several advantages over traditional
testing methods.

By converting the SJF algorithm into Coq, we ensure a precise
and unambiguous representation of its logic. This eliminates poten-
tial ambiguities that could arise from natural language descriptions
or pseudo-code. Secondly, by verifying that the algorithm outputs
a permutation of the input job list, we establish that all jobs are
scheduled exactly once, avoiding issues like job starvation. Finally,
by verifying that the jobs are sorted in ascending order of burst
times within the schedule, we formally guarantee that the benefit
of the SJF algorithm is adhered to—minimizing the average wait
time for jobs in the system.

However, it is important to acknowledge the limitations of this
approach. The verification focuses on a simplified, offline version
of the SJF algorithm. Real-world scheduling often includes dynamic
job arrivals and potentially more complex scheduling criteria. Fu-
ture work could explore the verification of a less restrictive system,
such as considering variable burst times, to extend the verification
method to dynamic scheduling environments.

Furthermore, while Coq offers a high degree of assurance, the
quality of the verification ultimately depends on the correctness of
the initial formalization of the algorithm. Hence, diligent validation
of the formalization is essential to ensure the overall validity of the
formal verification process.

5 CONCLUSION
Throughout this paper, we have provided our methodology for
creating a formal correctness proof for the Shortest Job First al-
gorithm in Coq. Our approach involves defining data types for
jobs, implementing the SJF scheduler function, and providing proof
of correctness via permutation and sortedness properties. By di-
rectly embedding the SJF algorithm in Coq and conducting rigorous
correctness proofs, we ensure the reliability and predictability of
the scheduler’s behavior. Furthermore, we have shown how our
formalization serves as a foundation for future research and devel-
opment in scheduling algorithms. We invite readers to examine the
provided SJF code and accompanying proofs to verify our findings
and contribute to the advancement of formal methods in computer
science.

REFERENCES
[1] Kimaya Bedarkar, Mariam Vardishvili, Sergey Bozhko, Marco Maida, and Björn B

Brandenburg. 2022. From intuition to coq: A case study in verified response-time
analysis 1 of FIFO scheduling. In 2022 IEEE Real-Time Systems Symposium (RTSS).
IEEE, 197–210.

[2] Andrew Dessler. 2024. ATMO 321 PYTHON FOR ATMOSPHERIC SCIENCES.
LibreTexts.

[3] Simon Doherty, Lindsay Groves, Victor Luchangco, and Mark Moir. 2004. Formal
Verification of a Practical Lock-Free Queue Algorithm. (2004).

[4] Yalin Hu and Robert Armstrong. 2011. A Survey of Formal Verification in Mission-
critical, High-consequence Applications. (2011).

PCSC2024, May 2024, Laguna, Philippines Luteria et al.

[5] Kanaka Juvva. 1998. Real-Time systems. (1998). https://users.ece.cmu.edu/
koopman/dess99/realtime/

[6] Moez Krichen. 2023. A survey on formal verification and validation techniques
for internet of things. Applied Sciences 13, 14 (2023), 8122.

[7] Pramod Kumar, Lalit Kumar Singh, and Chiranjeev Kumar. 2020. Performance
evaluation of safety-critical systems of nuclear power plant systems. Nuclear
Engineering and Technology 52, 3 (2020), 560–567.

[8] Peng Li, Binoy Ravindran, and Syed Suhaib. 2004. A Formally Verified Application-
Level Framework for Real-Time Scheduling on POSIX Real-Time Operating
Systems. IEEE TRANSACTIONS ON SOFTWARE ENGINEERING (2004).

[9] Divi Pruthvi. 2013. Reducing Context Switching Overhead by Processor Archi-
tecture Modification. Advances in Electronic and Electric Engineering (2013).

[10] Tri Dharma Putra. 2020. Analysis of Preemptive Shortest Job First (SJF) Algorithm
in CPU Scheduling. International Journal of Advanced Research in Computer and
Communication Engineering 9, 4 (2020), 41–45.

[11] Syed Shah, Ahmad Mahmood, and Alan Oxley. 2009. Hybrid Scheduling and
Dual Queue Scheduling. (2009).

[12] Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne. 2012. Operating
system concepts. [Sl].

[13] The Coq Development Team. 2021. The Coq Proof Assistant Reference Manual –
Version V8.13.1. (2021). http://coq.inria.fr

[14] Florian Vanhems, Vlad Rusu, David Nowak, and Gilles Grimaud. 2022. A Formal
Correctness Proof for an EDF Scheduler Implementation. (2022), 281–292.

https://users.ece.cmu.edu/ koopman/des s99/real time/
https://users.ece.cmu.edu/ koopman/des s99/real time/
http://coq.inria.fr

	Abstract
	1 Introduction
	1.1 Contributions

	2 Background
	3 Methodology
	3.1 Formalization of SJF Algorithm
	3.2 Correctness Proof of SJF Algorithm

	4 Discussion
	5 Conclusion
	References

