
Formal Verification of a Custom Scheduling Algorithm and
Specification of a Round-Robin Implementation using Coq

Christian Choa

University of the Philippines Diliman

cjchoa@up.edu.ph

Brylle Logroño

University of the Philippines Diliman

bblogrono@up.edu.ph

Raymart Villos

University of the Philippines Diliman

rpvillos@up.edu.ph

Alfonso B. Labao

University of the Philippines Diliman

ablabao@up.edu.ph

Henry N. Adorna

University of the Philippines Diliman

hnadorna@up.edu.ph

ABSTRACT
The Operating System (OS) scheduler is crucial for resource alloca-

tion and task execution. However, ensuring the dependability of

scheduling algorithms is challenging due to possible human errors

in testing. Formal verification provides a systematic approach to

prove algorithm correctness and soundness. By mathematically

modeling and verifying properties, formal methods ensure sched-

uler implementations adhere to specifications and function cor-

rectly. In this study, we used Coq to formally verify a custom sched-

uling algorithm, mysched, and formulated related correctness and

soundness theorems that were then proven using Coq proof tactics.

Moreover, we also provided formal specifications of the Round-

Robin scheduling algorithm in Coq.

CCS CONCEPTS
• Theory of computation → Logic and verification;

KEYWORDS
Formal Verification, Coq, Operating System, Round-Robin Schedul-

ing Algorithm

ACM Reference Format:
Christian Choa, Brylle Logroño, Raymart Villos, Alfonso B. Labao, andHenry

N. Adorna. 2024. Formal Verification of a Custom Scheduling Algorithm and

Specification of a Round-Robin Implementation using Coq. In Proceedings
of Philippine Computing Science Congress (PCSC2024). Laguna, Philippines,
6 pages.

1 INTRODUCTION
Operating Systems (OS) are software programs that facilitate the

execution of tasks and manage computer resources. As an essential

component of most computers, the different modules of the OS

should be correctly programmed to ensure the entire system’s secu-

rity, functionality, and efficiency. The scheduler determines which

task runs in the CPU and is among the most important parts of the

OS [2]. Its purpose is to optimize the utilization and allocation of

CPU resources, to improve system responsiveness, and to increase

overall system performance.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

PCSC2024, May 2024, Laguna, Philippines
© 2024 Copyright held by the owner/author(s).

The Formal verification process involves modeling the scheduler as

a mathematical object and proving that it implements the desired

functions correctly. Coq is a formal proof assistant that provides

a formal language to write mathematical definitions, executable

algorithms, and theorems [9]. Formal proof assistants like Coq are

used to mechanize the proofs of the soundness and other related

properties of scheduling algorithms. Formal verification of an oper-

ating system (OS) scheduler is crucial for ensuring its correctness

and reliability.

This paper will show proof of concept through a custom scheduling

algorithm called mysched as well as show Coq specifications for

its algorithm, properties, and proofs of the properties. In addition,

Coq specifications for the Round-robin algorithm will be shown

afterwards.

The proof assistant of choice for our research was Coq because it

is built upon a strongly typed core language called the Calculus

of Inductive Constructions (CIC). This ensures a high degree of

correctness in proofs by enforcing type consistency throughout the

development process. Furthermore, the strong type system helps

catch many errors at compile time rather than at runtime, leading

to more reliable proofs. Another good thing about Coq is that it

can automatically extract executable programs from specifications,

generating Objective Caml or Haskell source code. This feature fa-

cilitates the practical application of formal methods by bridging the

gap between formal specifications and executable implementations.

Next, Coq also supports expressive types, including inductive struc-

tures, dependent types, and subset types (Σ-types). These types

enable precise specifications and proofs, allowing users to capture

complex mathematical structures and properties. Following, the

syntax of Coq is more similar to a programming language as op-

posed to the syntax of Isabelle, a different formal proof assistant,

which uses common mathematical ASCII symbols in proof which

makes it slightly inconvenient when typing on an IDE [10]. Finally,

Coq implements a functional programming language supporting

its types. This allows users to express functions over inductive

types, write proofs using case analysis, and interactively evaluate

expressions, enhancing the flexibility and usability of Coq as a proof

assistant [9].

1.1 Related Work
A case study done by Bedarkar et.al verified the Response-Time

Analysis (RTA) of FIFO scheduling with the use of Coq Proof Assis-

tance. The study aims to motivate more researchers to explore the

use of proof assistants to minimize human error in mathematical

PCSC2024, May 2024, Laguna, Philippines Christian Choa, Brylle Logroño, Raymart Villos, Alfonso B. Labao, and Henry N. Adorna

reasoning. In addition, the study points out that there have been a

lot of intuitive results in the past that, at first, seemed sound but

was later to be proven incorrect. Verification was done by defining

the system model, encoding the scheduling policy and preemption

model, proving abstract work conservation, bounding the maxi-

mum busy-window length and delay within a busy window, and

defining the search space [3]. This process will be similarly seen in

the following listed studies.

In another study, Sun and Lei formally verified a task scheduler

that selects the highest priority ready task for Embedded Operating

Systems (EOS) [8]. Here, the researchers verified the EOS task

scheduler at different abstraction levels under a unified framework.

They had three parts which are: defining the API specifications,

defining the functional specifications, and lastly, linking together

the aforementioned modules once verified.

Lastly, the formal verification of the OS Kernel seL4, which uses

a round-robin scheduler, was done through Isabelle by Klein et.al

[7]. According to the researchers, seL4 is the first-ever general-

purpose OS kernel that is fully formally verified for functional

correctness which will allow for the construction of more secure

and reliable systems on top. Verification process is done through dif-

ferent specification layers such as abstract specification, executable

specification, C implementation, and machine model which only

focuses on the cache and TLB. The researchers conclude that per-

formance does not have to be sacrificed for formal verification. In

addition, it was also concluded that "future application proofs can

rely on the formal kernel specification that seL4 has been proven

to implement". Isabelle and Coq have similarities and differences

with one another. Both Isabelle and Coq have automatic tactics for

proving or simplification of complex statements. They both as well

have approximately the same size of proof and both have a large set

of libraries. Isabelle is different to Coq in its expressiveness of un-

derlying logic. While Isabelle uses classical higher-order logic, Coq

uses intuitionistic logic [10]. In addition, the author Yushkovskiy

believes that Coq requires a deeper understanding of underlying

logic theory; however, both Isabelle and Coq would require unfamil-

iar users a lot of required additional learning in order to understand

the process of proving [10].

1.2 Significance
Computers with operating systems are used everywhere in the

world. The computer has integrated itself to be a necessity in all

aspects of the world. From day-to-day devices such as smartphones

to complex computer systems that manage transportation systems

[1], ensuring that these computers work as intended holds signif-

icant importance in maintaining the safety of those that rely on

them. One of the roles of a computer’s operating system is sched-

uling. There are different kinds of scheduling algorithms, such as

the First In, First Out algorithm, Shortest Job to Completion algo-

rithm, and the Round-robin algorithm, each with its own strengths,

weaknesses, and appropriateness of usage. [4]

This study aims to formally verify the round-robin algorithm through

Coq proof assistance. In doing so, the researchers will be able to

determine if the algorithm is sound and will be able to find any

errors, limitations, and bugs that exist in the algorithm.

If the round-robin algorithm is successfully formally verified, it is

ensured that operating systems that use the round-robin algorithm

use a sound scheduling algorithm, therefore ensuring that comput-

ers work as intended in that aspect. Additionally, future researchers

will be able to use this verification of the round-robin algorithm

to check the soundness of other algorithms that is based on the

round-robin algorithm. [5].

Further down the line, the formal verification of a round-robin

algorithm will provide a step in the right direction to formally

verify real-time systems. The round-robin algorithm, being the

simplest preemptive scheduling algorithm, has so many different

applications, uses, and algorithms based on it. Below is a study on a

round-robin based load balancing in Software Defined Networking

(SDN):

Results show that round-robin strategy is better than

random strategy because round-robin distributes the

load uniformly while random does not. [6]

The verification of the round-robin algorithm will allow for the

transition from the random strategy to the round-robin strategy to

be simpler. It would remove the need to ensure that the round-robin

algorithm is sound since it has already been verified through Coq

proof assistance.

Formal verification of a widely used algorithm, such as the round-

robin algorithm, ensures that programs and real-world systems that

use the algorithm will work and behave as intended which will

allow for assurance that computers used all around the world stay

safe and work as intended.

2 SCHEDULERS
In developing a proof for the algorithm, an accurate translation to

Coq is one of the primary priorities. There aremanyways to achieve

an implementation that satisfies the definition of the scheduling

algorithm.

However, careful considerations should be kept in mind because of

how it will affect the complexity of proving the theorems. Repre-

sentations must also be chosen such that they satisfy the structural

requirements of Coq. Coq follows a functional paradigm, hence, mu-

table states and variables are not used. Recursive functionsmust also

be well-founded. Well-founded recursion generalizes both strong

induction and recursion.

In this paper, the behavior of an actual operating system scheduler

is simplified to achieve a bounded complexity in the theorems we

aim to prove. Nevertheless, these simplified models do not have

behaviors that we do not expect from a process task being scheduled

by an operating system. The tasks or processes all have unique

identifiers, some amount of burst time, and in the case of the Round-

robin Scheduler, a total burst time that is divisible by the time slice.

Further delimitations were applied to the scheduler. All processes

to be scheduled arrive at the same time at 𝑡 = 0, the burst times

of all the processes are equal, and the algorithm is offline. Offline

algorithms are given the whole problem data from the beginning.

Finally, the overhead for context-switching between two processes

is disregarded.

Formal Verification of a Custom Scheduling Algorithm and Specification of a Round-Robin Implementation using CoqPCSC2024, May 2024, Laguna, Philippines

2.1 Custom Scheduling
The custom scheduling algorithm, mysched, processes a list of task
priority numbers. It iterates through the priorities from left to right,

executing a task immediately if its priority is higher than the sum

of all remaining priorities to its right. Otherwise, it stores the task

in a FIFO queue for later execution. After examining all tasks, it

executes them in the order they were stored in the FIFO queue.

Algorithm 1 mysched Algorithm

1: procedure mysched(tasks)
2: 𝑛 ← length of 𝑡𝑎𝑠𝑘𝑠

3: 𝑞𝑢𝑒𝑢𝑒 ← empty queue

4: for 𝑖 ← 1 to 𝑛 do
5: if tasks[𝑖] > ∑𝑛

𝑗=𝑖+1 tasks[𝑗] then
6: execute task tasks[𝑖]
7: else
8: push tasks[𝑖] onto 𝑞𝑢𝑒𝑢𝑒
9: end if
10: end for
11: while 𝑞𝑢𝑒𝑢𝑒 is not empty do
12: execute task pop(𝑞𝑢𝑒𝑢𝑒)
13: end while
14: end procedure

2.1.1 Algorithm.

Figure 1: Custom Scheduler Sample Execution

Process ID Priority Number Arrival Time Burst Time
1 1 0 1

2 6 0 1

3 2 0 1

4 3 0 1

Table 1: Example Process Table

The mysched algorithm takes in as input a list of task priority

numbers seen in Table 1. The processes arrive at the same time.

However, the scheduler still has to determine which among the

processes to process first. Hence, we break ties by ordering them on

increasing process IDs. The scheduler then examines the list from

left to right. If it finds that the priority number of a task is strictly

greater than the sum of all the other priority numbers to the right,

the algorithm will immediately execute the task. Consider process

P2 in Table 1. It executed immediately since its priority number

6 > 2 + 3. It is the first process to execute since, for the other case,

the algorithm places the task in a First-in-First-Out(FIFO) queue

first. It then goes on to examine the next number in the list. Once

the list has been examined, the algorithm executes the FIFO queue.

2.1.2 Coq Translation.

Fixpoint mysched (l : list nat) : list nat :=
match l with
| [] => []
| h::t => if ((sum t) <? h) then

h::(mysched t)↩→

else (mysched t) ++ [h]
end.

The mysched function operates on a list of natural numbers

(nat). When provided an empty list, it returns an empty list as

well. However, for a non-empty list 𝑙 , which has a head element

ℎ and a tail list 𝑡 , if the sum of the elements in 𝑡 is less than ℎ,

ℎ is placed at the beginning of the result obtained by recursively

applying mysched to 𝑡 . On the other hand, if the sum of elements

in 𝑡 is greater than or equal to ℎ, ℎ is appended at the end of the

result obtained by recursively applying mysched to 𝑡 .

2.1.3 Soundness Property. We define a theorem on the custom

scheduler soundness.

Theorem 2.1. For all input list 𝐿, the output of the algorithm are
permutations of the list 𝐿.

Theorem mysched_is_sound :
forall l, Permutation l (mysched l).

Proof.
intros. induction l.
- simpl. apply Permutation_refl.
- simpl. bdestruct (sum l <? a).

+ change (a::l) with ([a]++l).
change (a::mysched l) with

([a]++(mysched l)).↩→

apply Permutation_app_head. apply

IHl.↩→

+ change (a::l) with ([a]++l).
apply perm_trans with (l ++ [a]).

-- apply Permutation_app_comm.
-- apply Permutation_app_tail.
-- apply IHl.

Qed.

This theorem states that running mysched with a given input

list, its output list will be a rearrangement of the input list. The

algorithm does not add or remove any items on the list, for it only

changes the order of the input list. This theorem indicates that the

algorithm works correctly by ensuring that no items in the list are

added or removed since the output list is only a reordering of the

input list.

The Coq proof shows that the mysched function is sound by

showing that the function outputs the same list but rearranged. It

PCSC2024, May 2024, Laguna, Philippines Christian Choa, Brylle Logroño, Raymart Villos, Alfonso B. Labao, and Henry N. Adorna

proves this by looking at two cases: when the list 𝑙 is empty and

when it is not.

In the case that the list is empty, there is nothing to rearrange;

therefore, the rearrangement of the list is the same as the input.

When the list has elements, it checks if the sum of the remaining

elements is less than the first element. If it is, it sets the first element

as the first item in the output list, otherwise, it is placed at the end

of the output list.

The proof proceeds by breaking down the list into its constituents

and applying appropriate permutations to maintain the desired

ordering. This is achieved through various applications of permu-

tation properties, such as reflexivity, transitivity, and properties

of list concatenation, ultimately proving that mysched produces a

permutation of the input list.

2.1.4 Correctness Property. To aid with the proof for the cor-

rectness of the custom scheduler, we have a helper function that

gets the index of a task.

Fixpoint getindex (l : list nat) (v : nat) :

nat :=↩→

match l with
| [] => 0
| h::t => if (v =? h) then 0 else

1 + getindex t v
end.

The following is the Coq code for the proof of correctness to

demonstrate that the intended behavior of the algorithm is assured.

Theorem mysched_propone : forall a b l,
(b =? a = false) ->
(0 <=? getindex (mysched l) a = true) ->
(1 <=? getindex (mysched l) b = true) ->
(0 <=? getindex (mysched l++[b]) a = true)

->↩→

(1 <=? getindex (mysched l++[b]) b = true)

->↩→

(sum (b::l) <? a = true) ->
((getindex (mysched (a::b::l)) a <?

getindex (mysched (a::b::l)) b) =
true).

↩→

↩→

Proof.
intros. simpl. bdestruct (b + sum l <? a).
+ simpl. bdestruct (b =? a).

-- discriminate H.
-- bdestruct (sum l <? b).

++ simpl. bdestruct (b =? b).
--- bdestruct (a =? a).

+++ apply Nat.ltb_lt. lia.
+++ bdestruct (a =? b).
---- apply helper_one in

H9. destruct H9.↩→

reflexivity.
---- apply helper_one in

H9. destruct H9.↩→

reflexivity.
--- bdestruct (a =? a).

+++ apply Nat.ltb_lt. lia.
+++ bdestruct (a =? b).

---- apply Nat.ltb_lt.

lia.↩→

---- apply Nat.ltb_lt.
apply Nat.leb_le

in H0.↩→

apply Nat.leb_le

in H1.↩→

lia.
++ simpl. bdestruct (a =? a).

--- apply Nat.ltb_lt. lia.
--- apply Nat.leb_le in H2.

apply Nat.leb_le in H3.
lia.

+ simpl. bdestruct (sum l <? b).
-- apply Nat.leb_le in H4. simpl in H4.

apply helper_two in H4. destruct

H4. apply H5.↩→

-- apply Nat.leb_le in H4. simpl in H4.
apply helper_two in H4. destruct

H4. apply H5.↩→

Qed.

This theorem guarantees that when a new item task b is added

to an existing list of tasks, the mysched algorithm will make sure

that the priority ordering of task a and the newly added task b will

be maintained. If a has a higher priority than the new task b, it will

maintain that status in the list.

This theorem checks different scenarios to confirm this property.

It considers where tasks a and b are positioned in the output list

of mysched, their priorities relative to each other, and how they

compare to other tasks in the list.

The theorem mysched_propone is focused on proving that the

mysched algorithm maintains the correct order between tasks a

and b in the output list, even after adding task b to an existing

list of tasks. The proof examines various scenarios to ensure this

correctness:

(1) If the combined priority of task b and the tasks in the list is

lower than the priority of task a, then the proof makes sure

that a retains its priority over task b in the resulting list.

(2) If the combined priority of task b and the tasks in the list

is greater than the priority of task a, then the proof makes

sure that b gets priority over task a in the resulting list.

(3) Additional conditions are considered to handle cases where

tasks a and b have equal priority or are not present in the

list, ensuring the correctness of the algorithm under various

circumstances.

The proof relies on breaking down scenarios using boolean de-

composition and employing helper lemmas to address each case.

By doing so, it demonstrates that the mysched algorithm success-

fully preserves the relative ordering of tasks a and b based on their

priorities, therefore confirming the algorithm’s correctness even

after task b is added to the list.

Formal Verification of a Custom Scheduling Algorithm and Specification of a Round-Robin Implementation using CoqPCSC2024, May 2024, Laguna, Philippines

2.2 Round-Robin Scheduling
2.2.1 Algorithm.

Algorithm 2 Round-Robin

1: // Initialize variables

2: 𝑟𝑒𝑎𝑑𝑦_𝑞𝑢𝑒𝑢𝑒 ← Queue for processes ready to execute

3: 𝑐𝑢𝑟𝑟_𝑝𝑟𝑜𝑐 ← None

4: 𝑞𝑢𝑎𝑛𝑡𝑢𝑚← 5

5: while 𝑟𝑒𝑎𝑑𝑦_𝑞𝑢𝑒𝑢𝑒 is not empty do
6: 𝑐𝑢𝑟𝑟_𝑝𝑟𝑜𝑐 ← 𝑟𝑒𝑎𝑑𝑦_𝑞𝑢𝑒𝑢𝑒.𝑑𝑒𝑞𝑢𝑒𝑢𝑒 ()
7: 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔_𝑡𝑖𝑚𝑒←min(𝑞𝑢𝑎𝑛𝑡𝑢𝑚, 𝑐𝑢𝑟𝑟_𝑝𝑟𝑜𝑐.𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔_𝑏𝑢𝑟𝑠𝑡)
8: for t← 1 to 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔_𝑡𝑖𝑚𝑒 do
9: 𝑐𝑢𝑟𝑟_𝑝𝑟𝑜𝑐.𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔_𝑏𝑢𝑟𝑠𝑡 ←

𝑐𝑢𝑟𝑟_𝑝𝑟𝑜𝑐.𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔_𝑏𝑢𝑟𝑠𝑡 − 1
10: if 𝑐𝑢𝑟𝑟_𝑝𝑟𝑜𝑐.𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔_𝑏𝑢𝑟𝑠𝑡 = 0 then
11: // Process finished, no longer in the ready queue

12: break
13: end if
14: end for
15: if 𝑐𝑢𝑟𝑟_𝑝𝑟𝑜𝑐.𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔_𝑏𝑢𝑟𝑠𝑡 > 0 then
16: // Process not finished, enqueue back to the ready queue

17: 𝑟𝑒𝑎𝑑𝑦_𝑞𝑢𝑒𝑢𝑒.𝑒𝑛𝑞𝑢𝑒𝑢𝑒 (𝑐𝑢𝑟𝑟_𝑝𝑟𝑜𝑐)
18: end if
19: end while
20: // All processes finished, algorithm ends

Figure 2: Round-robin Algorithm Execution Example

Process ID Arrival Time Burst Time
1 0 3

2 0 3

Table 2: Example Process Table

The Round-Robin scheduling algorithm assigns a fixed time unit,

known as quantum, to each process during which it can execute. If

a process does not complete within its quantum, it is temporarily

suspended, and the next process in the queue is given a chance to

execute. The suspended process is then placed at the end of the

ready queue to await its next turn. This process continues until all

processes have completed execution. The pseudo code shown in

Algorithm 2 shows a possible implementation of the Round-Robin

algorithm and will not necessarily be the exact specification used

for the Coq implementation.

We can see from Table 2 that the two processes—𝑃1 and 𝑃2—both

have the same burst times of 3 𝑚𝑠 and arrive at 0 𝑚𝑠 . It is also

evident that both processes alternately run for 1 𝑚𝑠 each in the

order 𝑃1 and 𝑃2, respectively until their burst times are satisfied.

Since they both have a burst time of 3𝑚𝑠 , it is expected that the

last process, 𝑃2, would end after 6𝑚𝑠 , which is the case.

2.2.2 Coq Translation.

Fixpoint rr (l1 : list nat) (l2 : list nat)

(n : nat) : list nat :=↩→

match n with
| O => []
| S n' => match l1, l2 with

| [], [] => []
| [], h::t => h::(rr [] t n')
| h::t, [] => h::(rr t [] n')
| a::b, c::d => a::c::(rr b d n')
end

end.

The fixpoint rr recursively implements an implementation of a

Round-robin algorithm. The fixpoint rr takes in two lists of the nat

type, takes the first element of each list, and concatenates them

into an output list of type nat.

2.2.3 Soundness Property. For the theorem on the algorithms

soundness, we will define two axioms that will assist in formulating

the proof.

axiom 1. If it is true that all id’s in list 𝑙1 is ID 𝑖 , then the length of
adding another job with id i to l1 is 1 + the length of previous joblist.

axiom 2. If it is true that all id’s in list 𝑙1 is id 𝑖 , then it is true as
well for the tail of the list.

We will need another axiom for the second argument of the

algorithm.

axiom 3. If it is true that all id’s in list 𝑙2 is ID 𝑖 , then the length of
adding another job with id i to 𝑙2 is 1 + the length of previous job list.

For the theorem on soundness, we have the following definition.

Theorem 2.2. For all lists 𝑙1, 𝑙2, and an element 𝑥 : If the length of
the result of a function rr applied to an empty list [], 𝑙2, and 𝑥 is 0,
and If the uniform function applied to l1 is true, Then the length of l1
is equal to the length of the result of the rr function applied to l1, l2,
and x.

Axiom firstaxiom: forall l1 l2 x a, uniform

l1 1 = true ->↩→

getlength (rr (a :: l1) l2 x) 1 = S

(getlength (rr (l1) l2 x) 1).↩→

Axiom secondaxiom: forall l a, uniform (a ::

l) 1 = true -> uniform (l) 1 = true.↩→

Theorem soundnessone : forall l1 l2 x,
0 = getlength (rr [] l2 x) 1
-> uniform l1 1 = true

PCSC2024, May 2024, Laguna, Philippines Christian Choa, Brylle Logroño, Raymart Villos, Alfonso B. Labao, and Henry N. Adorna

-> (length l1) = (getlength (rr l1 l2

x) 1).↩→

Proof.
intros. induction l1.
- simpl. apply H.
- simpl. rewrite firstaxiom. rewrite IHl1.

reflexivity.↩→

apply secondaxiom in H0. apply H0.
apply secondaxiom in H0. apply H0.

Qed.

Axiom thirdaxiom: forall l1 l2 x a, uniform

l2 2 = true ->↩→

getlength (rr l1 (a::l2) x) 2 = S

(getlength (rr (l1) l2 x) 2).↩→

Axiom fourthaxiom: forall l a, uniform (a ::

l) 2 = true -> uniform (l) 2 = true.↩→

Theorem soundnesstwo : forall l1 l2 x,
0 = getlength (rr l1 [] x) 2
-> uniform l2 2 = true
-> (length l2) = (getlength (rr l1 l2

x) 2).↩→

Proof.
intros. induction l2.
- simpl. apply H.
- simpl. rewrite thirdaxiom. rewrite IHl2.

reflexivity.↩→

apply fourthaxiom in H0. apply H0.
apply fourthaxiom in H0. apply H0.

Qed.

In the Coq code, we can see the use of Axioms within Coq’s proof

environment. Axioms are crucial since they allow users to express

mathematical ideas and theories that may not be fully captured

by the system’s built-in rules and definitions. However, it must

be noted that careful selection and reasoning about axioms are

essential to ensure that the formalized theories are both complete

and consistent.

The first axiom states that if all id’s in the list are 1, then adding

another job with id 1 in the list will result to its length being one

more than the length of the previous job list

The first Soundness theorem states that if all id’s in the list are

1, then applying the round-robin algorithm to the list will result in

a list where the number of jobs with id 1 is equal to the length of

the list.

We can observe that the third and fourth axioms and the second

Soundness theorem are counterparts for the second list input.

3 CONCLUSIONS
We have demonstrated the application of formal verification tech-

niques using Coq to ensure the correctness and soundness of a

custom scheduling algorithm, referred to as mysched, and of a

Round-Robin scheduling algorithm in a simpler case. By mathemat-

ically modeling these algorithms and proving their properties using

Coq, we have shown that formal methods can be effectively used

to ensure that scheduler implementations adhere to specifications

and function correctly based on how they were defined.

We have selected a subset of properties to be proven through the

formal verification process over a simplified model of schedulers.

We, nonetheless, have highlighted the importance of scheduling

algorithms in operating systems and the need for rigorous verifica-

tion methods to ensure their dependability. The formal verification

of these algorithms is crucial for ensuring the correctness and relia-

bility of operating systems, which are integral to various computer

systems and applications worldwide.

Moving forward, the study can be expanded to more general

cases. Some cases future researchers could consider would be vary-

ing the arrival time and total burst times of the processes. This,

however, entails increased complexity in creating the proofs. The

theorems demonstrated could also serve as a starting point for

proofs of the general case. The general case is desired since it mod-

els actual OS behavior.

The use of formal verification techniques, as demonstrated in

this study, will continue to play a vital role in ensuring the safety

and functionality of computer systems in various applications and

industries.

REFERENCES
[1] Md. Zahangir Alam, Mahfuzulhoq Chowdhury, and Parijat Prashun Purohit. 2014.

Development of an Intelligent Traffic Management System Based on Modified

Round-Robin Algorithm. International Journal of Control and Automation 7, 12

(Dec. 2014), 121–132. https://doi.org/10.14257/ijca.2014.7.12.12

[2] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau. 2018. Operating Sys-
tems: Three Easy Pieces. CreateSpace Independent Publishing Platform, North

Charleston, SC, USA. https://doi.org/10.5555/3299537

[3] Kimaya Bedarkar, Mariam Vardishvili, Sergey Bozhko, Marco Maida, and Bjorn B.

Brandenburg. 2022. From Intuition to Coq: A Case Study in Verified Response-

Time Analysis 1 of FIFO Scheduling. In 2022 IEEE Real-Time Systems Symposium
(RTSS). IEEE. https://doi.org/10.1109/rtss55097.2022.00026

[4] S Bharathi, MP Chethan, and SN Darshan. 2022. Comprehensive Analysis of

CPU Scheduling Algorithms. International Research Journal of Modernization in
Engineering Technology and Science (2022).

[5] Yosef Hasan Jbara. 2019. A new Improved Round Robin-Based Scheduling

Algorithm-A comparative Analysis. In 2019 International Conference on Com-
puter and Information Sciences (ICCIS). IEEE. https://doi.org/10.1109/iccisci.2019.

8716476

[6] Sukhveer Kaur, Krishan Kumar, Japinder Singh, and Navtej Singh Ghumman.

2015. Round-robin based load balancing in Software Defined Networking. In 2015
2nd International Conference on Computing for Sustainable Global Development
(INDIACom). 2136–2139.

[7] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock,

Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael

Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. 2009. seL4: formal

verification of an OS kernel. In Proceedings of the ACM SIGOPS 22nd symposium
on Operating systems principles (SOSP09). ACM. https://doi.org/10.1145/1629575.

1629596

[8] Haiyong Sun and Hang Lei. 2020. Formal verification of a task scheduler for

embedded operating systems. Journal of Intelligent amp; Fuzzy Systems 38, 2 (Feb.
2020), 1391–1399. https://doi.org/10.3233/jifs-179502

[9] The Coq Development Team. [n. d.]. The Coq Reference Manual.
[10] Artem Yushkovskiy. 2018. Comparison of Two Theorem Provers: Isabelle/HOL

and Coq. In proceedings of the Seminar in Computer Science (CS-E4000), Aalto

Univeristy, Autumn 2017. (2018). arXiv:arXiv:1808.09701

https://doi.org/10.14257/ijca.2014.7.12.12
https://doi.org/10.5555/3299537
https://doi.org/10.1109/rtss55097.2022.00026
https://doi.org/10.1109/iccisci.2019.8716476
https://doi.org/10.1109/iccisci.2019.8716476
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.3233/jifs-179502
http://arxiv.org/abs/arXiv:1808.09701

	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Significance

	2 Schedulers
	2.1 Custom Scheduling
	2.2 Round-Robin Scheduling

	3 Conclusions
	References

