
Incorporating a Computer Vision System to a Web Server to Parse
Real-time Data for Valorant Esports

Jan Jozef R. Laguer
Ateneo de Manila University

Quezon, Metro Manila
jan.laguer@student.ateneo.edu

Jenilyn A. Casano
Ateneo de Manila University

Quezon, Metro Manila
jagapito@ateneo.edu

ABSTRACT
There is currently no tool that allows broadcasting teams to visu-
alize in-game events in Valorant. Unlike its competitor, Counter
Strike, Valorant supports no such feature that allows a software to
request information pertinent to Esports broadcasting. This paper
made a system to get information from Valorant by making use of
computer vision to parse frames and web servers to distribute it.
Previous systems were explored to serve as a foundation and to see
if any improvements can be made. A Convolutional Neural Network
and Optical Character Recognition engine were used to perform
Image Classification and text extraction, respectively. Although a
lot of information can be extracted, there exists data that is not
visually represented and cannot be extracted. Due to the nature
of the game being a fast-paced tactical shooter, there is a need for
the tool to be able to parse and deliver the data at a high speed.
The system was tested on its execution speed and its accuracy by
testing the individual modules and the system as a whole. After
collecting the needed metrics, it is found that the tool is accurate
and is able to return data at a near real-time speed.
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1 INTRODUCTION
Esports tournaments are important to gaming culture. Kerttula has
said "Online streams and even some television shows create a spec-
tacular atmosphere around these tournaments and the best players
are now celebrities" [15]. These tournaments help grow the games
and communities they are a part of and entice new people to join
in the event. Events hosted by the game’s creators especially have
high showing. The PGL Major 2021 and the International 2021, a
Counter Strike: Global Offensive (CS:GO) tournament and a DOTA 2
tournament, respectively, both hosted by Valve had an average of
590 thousand and 850 thousand viewers, respectively [6, 7]. More re-
cently, the Valorant Champions Tour (VCT), a Valorant tournament
hosted by Riot Games, had an average of 460 thousand viewers [8].

While Valorant has grown from the VCT, the community has
also helped grow the player base through their own tournaments.
This includes different content creators and communities like Magu-
Cup and ValorantPH’s public games. AcadArena, an organization
for Campus Gaming and Esports Education in Southeast Asia [1],
hosted their tournament, the Alliance Games, which included Valo-
rant where the finals boasted 26 thousand views not including the
live audience [2].

With how young the game is, there are many features present
in other esports titles that are not present yet in the current game

itself. One such feature which this study focused on is a publicly
available method to get data on a currently active game. CSGO has
this feature called Game State Integration (GSI) which can expose
"all game state, and send an update notification as soon as the client
game state changes, to any local or remote HTTP POST endpoint
using JSON as the game state structure" [27]. Currently, Valorant
has no feature like this found on the official developer dashboard [9].
This feature is what powers other games’ broadcasting tools use
for their visualizations.

The goal of this study is to create a tool in order to address
not being able to access the needed data as well as elevate the
community’s broadcasts and production similar to other tools used
for other games to be similar to VCT. To fulfill this goal, the tool uses
computer vision, machine learning, and web development. Another
goal is to evaluate it to ensure that it is both accurate and has fast
execution speed because this would be used in an environment
where it is important to have both accurate and timely information.

To evaluate the tool, it mustmeet certain standards. One standard,
accuracy, comes from ISO 5725. This describes accuracy as the
combination of both precision and "trueness" [12]. This means that
to be accurate, the evaluation must be close to the actual value and
the spread of points must be close together. Another standard is that
events that happened in the game must reflect on the tool with little
delay. The Advanced Television Systems Committee (ATSC) has
established synchronization limits where the delay is 45±15ms [16].
Additionally, the concept of real-time is often associated with the
lack of delay and synchronization between two things. However,
the term real-time is not strictly defined. One paper has described
their tool, VisWiz as near real-time with the delay being less than 20
seconds [3] while another described real-time by stating how many
frames can be processed within a second or frames per second (FPS)
which in this case was between 24 and 60 FPS [14]. This is roughly
a delay between 16ms to 41ms.

2 REVIEW OF RELATED LITERATURE
Each game has its own way of giving information which include the
player’s state in the game, current standings, and other elements
specific to a certain game to spectators. For an in-game example,
DOTA 2 allows spectators of a game to access different statistics that
players in game have no access to. Other games, instead of having
this type of tool built into the game, allow getting information
about a current match outside the game. An example of this would
be CS:GO’s GSI Integration as this opens up a web server on a
computer currently running CS:GO and exposes “all game state,
and send an update notification as soon as the client game state
changes, to any local or remote HTTP POST endpoint using JSON
as the game state structure” [27].
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DOTA 2 provides different statistics that can be shown like net
worth, experience rate, and amount of last hits and denies. By
default, each option shows the raw numbers for each statistic but
can be transformed into a graph in order to make it easier to read
and find patterns. Most of these statistics and visualizations aren’t
available to the players playing. At most, the players only have the
statistics for their own team and selves’ kills, deaths, assists, and
current gold.

Production tools will be defined as tools that allow a broadcaster
to visualize something to show in broadcast automatically. These
tools make use of data in order to show a broadcast’s audience
pertinent data. For the case of esports, these tools visually display
a game’s current state at certain times or when the production
team deems it necessary. A popular tool that is used in the CS:GO
tournament scene is Lexogrine [17]. This tool takes in data, parses
it, and displays it depending on the event received from the GSI
server. The GSI server makes the data available for both teams;
however, a player will only have their team’s data available at any
time. The data for the other team is only updated during the start
of each round. The figure also shows some data that is not received
from the GSI server. These data include the team names and team
logos, where Lexogrine handles the state of each one.

Valorant has currently no way of getting this data for a normal
user, as there’s no in-game solution like DOTA 2 or an outside
solution like in CS:GO. This means that production tools for Valo-
rant are scarcely available. The reasons include a lack of an official
implementation, the age of Valorant, and the difficulty of real-time
data scraping itself. In order to build such a tool, there is a need to
take a look at other Production Tools, especially those relating to
Valorant. The lack of a production tool to assist those wanting to
broadcast their community’s games results in a big difference in
audience experience.

2.1 Similar Systems
The closest application to this study is the Lexogrine HUDManager.
The backend for Lexogrine was written in JavaScript and used
node.js and express.js for the server [17]. Lexogrine also has a local
database using NeDB.js to store any local data [17]. This meant that
each broadcaster had to run their own instance of the Lexogrine
HUD Manager. The communication between the server and the
HUD is mainly via a notification that a change in data has occurred
via a websocket connection. This is followed by sending a GET
request to the server for the new data.

Another 2 projects that aim to create production tools despite Val-
orant’s lack of data are deepsidh9’s Live-Valorant-Overlay [5] and
tugamars’ AcheronObs [26]. Each project used a Python server that
used computer vision to extract data from the screen. Where each
project differed was in the frontend, as they use either a JavaScript
and HTML frontend or a Java frontend. It is of note that these 2
projects are no longer being maintained, as both projects have not
been updated in at least 2 years as of March 2023.

A common point for these two project’s backend is the use of a
web server in order to deliver the data to the frontend. This is very
similar to CS:GO’s GSI feature though it was not written whether
the developers used that as an inspiration for this backend. Both
projects use Python to create the backend though the framework for

the web server for each project differs. deepsidh9’s implementation
uses the Flask framework, while tugamars uses a newer framework,
FastAPI.

These projects have different methods in order to deliver the
data to the frontend. deepsidh9 implemented a web-socket using
Socket.io as the main method of sending data. This implementation
lets the backend control when the data gets sent. tugamars has a
different approach wherein the frontend sends a request which trig-
gers the image processing. This implementation lets the frontend
control when the data gets sent.

The backend for both these projects have the same role, getting
data from the current Valorant window, though each project has a
different way of doing it. Tugamars’ implementation uses another
program to capture Valorant in order to start the scraping process.
The program is called OBS, which is an open source software for
capturing screens and or windows and broadcasting to the inter-
net [23]. This method requires OBS to be less than version 28 as the
plugin used by tugamars is not compatible with the later versions.
deepsidh9 has a different approach as it uses the Windows API
library in Python in order to access the Valorant window itself.
After some experimentation, this method does not seem to work
for the current release of Valorant, as it is possible the way Valo-
rant renders its screen has changed. After capturing each frame,
the backend then parses it using computer vision via the OpenCV
Python library.

2.2 Computer Vision Implementation in the
Similar Systems

Each project goes about this process differently. deepsidh9’s im-
plementation was able to collect information such as a player’s
life status, shield type, primary weapon, and ultimate status, and
current game score and spike status [5]. tugamars’ implementation
has a shorter list with only being able to get spike status, player’s
hp value, and whether a player has their ultimate up or not [26].
The reason for this discrepancy is that the former was able to scrape
data from the scoreboard, while the latter had not implemented
that feature. Additionally, the latter’s implementation required the
observer to go to an area of the map where the screen has only one
color, black.

The advantage of this was the ability to get a numerical value
for the health of a player, as there is currently only one element
found on screen relating to the health value of a player. This el-
ement is a bar that decreases and reveals the background as the
value becomes smaller. Due to the element’s property of having a
transparent background, collecting hp data can become inaccurate
as the background could lead to the element looking like it is full
when in actuality it is not. The disadvantage for this method is the
computer scraping data cannot be used as an observer for the game,
as the only thing the computer will see using this method is just a
black background along with the in-game HUD. This would require
another computer to act as an observer in the game that will receive
data from the backend server. As deepsidh9’s implementation does
not use this method, only one computer would be needed in order
to fully utilize the whole production tool, at the cost of not being
able to get numerical values for HP.
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Another area where these projects differ is how each project
handles optical character recognition. deepsidh9 uses the python
library EasyOCRwhile tugamars uses Tesseract [5], [26]. According
to Liao’s experimentation, EasyOCR is more accurate when com-
pared to Tesseract when it comes to recognizing numbers, while
the latter is more accurate when it comes to recognizing alphabet
characters [18]. They also mention that Tesseract’s processing time
is faster compared to EasyOCR when it is done on a CPU [18].

Template matching is a technique absent from tugamars imple-
mentation and present in deepsidh9’s. They use this technique to
analyze and figure out what images represent. Specifically, they
use this in order to figure out each player’s character, armor type,
and primary weapon. This can be further optimized as the current
implementation loops through a set of templates for each character,
weapon, and armor types. In the worst case, it’s possible that the
correct template would be at the end of the loop, which makes the
system perform suboptimally. A notable use of template matching
was detecting if the scoreboard was visible on screen, as there’s
only one template that needs to be checked.

3 METHODOLOGY
3.1 Programming Language
In fulfillment of this study’s objectives, the researcher has outlined
the use of Javascript and Python as programming languages.

The choice of JavaScript is due to its prevalent use in web appli-
cations and is, as Crockford wrote, the “Language of the Web” [4].
The reason for the need of a browser-based application is that OBS
has a feature that allows for them to be integrated into the program.
This integration allows the use of transparent backgrounds and
elements for the frontend. While using chroma keys can achieve the
same transparent backgrounds and elements, this method requires
that a certain color is removed entirely from the UI. This would
prove not possible as there are numerous agents and may result in
an agent having transparent elements which would be distracting
from the game that this HUD is supposed to be enhancing. In using
this programming language, the application is able to communicate
with a server and is able to change different elements based on
what the application receives. This acts as the HUD that displays
data that it receives from the server.

The choice of Python is due to the programming language’s
different modules that includes different web development frame-
works [24] and computer vision and image processing tools from
OpenCV [20]. Web development frameworks were mentioned due
to how compatible they are with web applications. The compati-
bility comes from the server included in these web development
frameworks, which enables communication between the said server
and the web application as the client [19]. Computer vision is a
requirement as this is the main method in order to get data from
Valorant’s game screen due to the game’s unavailability of a method
to get current game state [9]. All in all, this allows getting data
from Valorant’s game screen and sending it to the HUD.

Python was also chosen in order to create the image classifi-
cation models. As mentioned previously, there are many libraries
and modules in the Python ecosystem, and the library that was
used to create an image classification model would be TensorFlow.
According to Johnson, TensorFlow is an open-source end-to-end

platform for creating Machine Learning applications and is focused
on training and inference of deep neural networks [13].

3.2 Image Classification Model Creation
There are currently two visual elements that showcase an image
in order to represent something. With this in mind, the researcher
would need to create two image classificationmodels, one to identify
a player’s character and another to identify a player’s primary
weapon. Using TensorFlow, the models would be created using a
Convolutional Neural Networks (CNN). O’Shea and Nash wrote
that CNNs are mainly used for their pattern recognition in images
making them suitable to image focused tasks [21]. Another method
would use Template Matching similar to what previous projects
used but in Hmdaoy and Ahmed’s study comparing the two, they
have found that using a CNN was both faster and more accurate
compared to template matching [11]. CNNs commonly use 4 layers,
the input layer, the Convolutional Layer, the Pooling Layer, and the
Fully-connected Layer.

3.2.1 CNN Architecture. The Architecture of the CNN for creat-
ing the models would follow a common way to set it up. The most
common way of setting up the CNN Architecture is to set a Con-
volutional Layer followed by a Pooling Layer multiple times, then
following it up with Fully-connected Layers. The specific Architec-
ture for this thesis’ CNN would be as follows: an input layer, three
pairs of Convolutional Layer with rectified linear (ReLu) activation
and Pooling Layer, A Flatten Layer to transform the image to a 1
dimensional array, A Fully-connected Layer with ReLu activation,
and finally a Fully-connected Layer with softmax activation. In
order to prevent overfitting, a Dropout Layer with a rate of 20%
was added after the last Pooling Layer. Refer to Figure 1 for the
visualizations of each model.

The models are mostly similar with some differences. The con-
volution layers had a kernel size of 3x3 with "relu" activation. The
agent model had 16, 32, 16 filters while the weapon model had 16,
32, 64. Both models have the same pooling layers with a pool size
of 2x2. The second to last dense layer has 256 units for the agent
model while the weapon model had 128. Refer to Figure 2

3.2.2 Collection of Training Images. Before creating the CNN to
create the model, the training images would need to be created first.
The researcher first collected the display icons with transparent
backgrounds for each Valorant agent. Figure 3b shows an example
of a Valorant agent picture. The researcher then created a Python
script to put each image in a directory named for the Valorant agent
they represented. In each directory, the display icons were resized to
a 40 pixel by 40 pixel image, mirrored, and had different background
colors applied. The specific colors applied are as follows: #26493f,
#5a221f, #494834, #53755d, #9aa36f, #90a366, white, black, blue, red,
#307368, #5b2929, #285e54, #4a2323. After that, each image was
copied and then resized to a 30 pixel by 30 pixel image. The resizing
of pictures is done because there are visual elements that are these
sizes andwasmade to ensure themodel has no problem interpreting
them regardless of size.

The collection of the training images for the weapon classifier
had a different methodology. A custom game with the scoreboard
in constant view was recorded in order to capture the different
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(a) Agent Model

(b) Weapon Model

Figure 1: Visualization of Models using visualkeras [10]

weapon icons. The recording contained footage of the researcher
traversing the map with the scoreboard in the center of the screen.
For consistency, the same route was done for all weapons. The game
was recorded in 1920x1080 resolution with 60 frames per second.
Using a Python script, frames from the recording were extracted
by getting every 6th frame and cropping the frame to only the cell
in the scoreboard that shows the primary weapon of the player.
Figure 3a shows an example screenshot. These images were saved
in a directory with the name of the weapon it is representing as the
name.

The dataset for the agent and weapon classifiers resulted in 5128
and 5648 images respectively. The dataset for the agent classifier
resulted in 20 classes with an average of 256 images per class. The
dataset for the weapon classifier resulted in 18 class with an average
of 300 images per class.

3.3 OCR System
The Python module and library ecosystem allows for convenient
installations for OCR. One of the previously used OCR Systems,

Name (type) Output Shape Param #
conv2d (Conv2D) (None, 38, 38, 16) 448
max_pooling2d (MaxPooling2D) (None, 19, 19, 16) 0
conv2d_1 (Conv2D) (None, 17, 17, 32) 4640
max_pooling2d_1 (MaxPooling2D) (None, 8, 8, 32) 0
conv2d_2 (Conv2D) (None, 6, 6, 16) 4624
max_pooling2d_2 (MaxPooling2D) (None, 3, 3, 16) 0
dropout (Dropout) (None, 3, 3, 16) 0
flatten (Flatten) (None, 144) 0
dense (Dense) (None, 256) 37120
dense_1 (Dense) (None, 20) 5140

(a) Agent Model Summary

Name (type) Output Shape Param #
conv2d (Conv2D) (None, 30, 118, 16) 448
max_pooling2d (MaxPooling2D) (None, 15, 59, 16) 0
conv2d_1 (Conv2D) (None, 13, 57, 32) 4640
max_pooling2d_1 (MaxPooling2D) (None, 6, 28, 32) 0
conv2d_2 (Conv2D) (None, 4, 26, 64) 18496
max_pooling2d_2 (MaxPooling2D) (None, 2, 13, 64) 0
dropout (Dropout) (None, 2, 13, 64) 0
flatten (Flatten) (None, 1664) 0
dense (Dense) (None, 128) 213120
dense_1 (Dense) (None, 18) 2322

(b) Weapon Model Summary

Figure 2: Model Summary

(a) Example Screenshot

(b) Example Agent

Figure 3: Example of Image Collection

Tesseract, has a different way to install it. This installation involves
downloading a separate binary to ensure the respective module
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works. To simplify the process, another OCR system would be
chosen on the basis that it is on par or better in terms of accuracy
and speed and has a more simple installation process.

The OCR Engine that was used for development is PaddleOCR
which can be installed via pip, the built-in way to install packages
in Python environments. It self-documents as a "practical ultra-
lightweight OCR system" with considerations with regard to the
balance of accuracy and speed [22]. The process for this system
includes first detecting texts and setting up the bounding boxes
and then performing text recognition on each of those boxes by
using Differentiable Binarization (DB) and Convolutional Recurrent
Neural Network (CRNN) [22].

Once the output has been generated from PaddleOCR, post-
processing is done to keep the output consistent for each column of
the scoreboard that uses OCR. The output also has any whitespace
stripped from the beginning and the end.

OCRwould be used on every section of the scoreboard, except for
the agent portrait column, weapon column, and the ping column
on each row. For sections that only have numbers, any special
characters or letters are removed. One special case is the ultimate
status column of the scoreboard. Majority of the time, this column
only features numbers and a slash. Once a player’s ultimate is ready
to use, the scoreboard would show "READY" instead of the numbers.
The post-processing would make sure to turn the "READY" into a
number to keep things consistent. The number would be dependent
on each agent, as each agent has a different number of max ultimate
points.

3.4 Development Frameworks
To facilitate a more efficient development, frameworks would be
used for both the creation of the backend server and frontend ap-
plication. While a framework was used in creating the backend
server for the previous projects, there was none used for the fron-
tend application. tugamars and deepsidh9 has used FastAPI and
Flask respectively for their projects. Both of these are popular web
frameworks used to create web servers.

The chosen backend framework for this thesis would be FastAPI.
According to the benchmarks created by TechEmpower, FastAPI
has a higher performance score compared to Flask in terms of single
query and multiple queries [25]. This framework also automatically
creates interactive API documentation on the /docs and /redoc URLs.
Besides that, FastAPI also creates a schema using the OpenAPI
standard for creating APIs. This allows for easy testing of individual
modules and testing of the system as a whole.

The chosen frontend framework for this thesis would be NextJS.
NextJS is a web framework using the React UI library. By using this
framework, it is possible to create multiple pages as well as handle
different requests to the backend server in order to mutate any
data that is on the server as well as any internal data on the client.
This framework also allows faster development as the routes are
automatically generated from the file structure during development.

3.5 Testing
Once the product is complete, testing was done to determine the
tool’s performance compared to broadcasting real-time standards.
These broadcasting standards would follow what the ATSC has

established, where the synchronization limit delay should be in the
range of 45±15ms [16]. The other standards mentioned previously
would also be considered. Accuracy would determine the correct-
ness of the information being displayed. Execution time would refer
to the time it takes for the tool to parse data from the game and
display it.

To illustrate, examining Figure 3a would result in the following
data, which would be in a JSON format. The spike status would be
false. The team on the left would be defending and the team on
the right would be attacking with 1 and 0 players respectively. The
player has Neon as an agent with 0 kills, deaths, and assists, has
their ultimate ready to use, has 99,999 credits, and has the Sheriff
as their highest value weapon.

These tests were done in order to evaluate the different parts
of the tool in terms of accuracy and execution time. The accuracy
tests were done on the models, both OCR and CNN. The tool parses
two areas, the scoreboard and top bar, at the same time. The test
for execution time was done on these two parts of the tool as well
as the system as a whole.

4 RESULTS AND DISCUSSION
4.1 Accuracy

4.1.1 Agent Classification Model. The training data for this
model was first loaded into an image dataset. This was done using
the utility function "image_dataset_from_directory" method from
the keras module which also separates the images into a number of
batches. In that dataset, the images were then normalized to keep
the values between 0 and 1. The dataset was then split into training,
validation, and test datasets by splitting them into a ratio of 7:2:1.
This divided the 161 batches into 113 batches, 32 batches, and 16
batches for the training, validation, test datasets. This ratio allows
for the majority of the dataset to be used for training and validation.
This also allows means that some images are not used for training
or validation, which makes the testing more reliable as it is not
recognizing images that it already has seen before.

The model was then created using the architecture stated above.
The Convolutional Layers for this model had 16, 32, and 16 filters
respectively. Each of these layers had a kernel size of 3x3 with a
stride of 1 and had ReLu activation applied. The Pooling Layers had
a size of 2x2 which essentially results in the image being cut in half
after each layer. The Fully-connected Layers had 256 and 20 units
respectively, andwhen combinedwith the softmax activation allows
the model to give each class a confidence level. The model was
compiled with the adam optimizer and the categorical crossentropy
loss function. Finally, the model was trained for 20 epochs.

Figure 4 shows the loss and accuracy of each epoch of training.
The figure also shows that the training and validation lines con-
verge, which means that the resulting model does not suffer from
over fitting. Over fitting, in the context of machine learning models,
is when the model is good at identifying what it was trained on but
not on things that it has not seen.

The model was then evaluated using the test dataset. This was
done with the metrics for precision, recall, and binary accuracy.
Precision measures how often the model is correct every time it
predicts positive for a class. Recall measures how often the model
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(a) Accuracy over time

(b) Loss over time

Figure 4: Agent Classification Model Training and Validation
Metrics

predicts correct every time a class appears. Binary accuracy is a
measure on how often the model gets a prediction correct.

Below are the results for the agent classification model. All met-
rics are seen to be above 99% which means that the model is con-
sidered to be highly accurate.

• Precision=0.99553573
• Recall=0.99553573
• Binary Accuracy=0.99955356

4.1.2 WeaponClassificationModel. Similar to the previousmodel,
the training images were loaded into an image dataset. The images
were then normalized to be between 0 and 1. The dataset was also
split into training, validation, and test datasets with the same ratio
in the previous model. This divided the 177 batches into 125 batches
for training, 35 batches for validation, and 17 batches for testing.

The model was created using the architecture stated previously.
The Convolution Layers for this model had 16, 32, and 64 filters

(a) Accuracy over time

(b) Loss over time

Figure 5: Weapon Classification Model Training and Valida-
tion Metrics

respectively. The kernel size was 3x3 with a stride of 1 and had ReLu
activation applied. Pooling Layers are the same. This differed as
the Fully-connected Layers had 128 and 18 units respectively. The
model was compiled with the adam optimizer and the categorical
crossentropy loss function. Finally, the model was trained for 20
epochs.

Figure 5 are the loss and accuracy over each epoch of training.
The figure shows, similar to figure 4, the training and validation
lines converging. This means that the model also does not suffer
from over fitting.

The model was then evaluated using the test dataset. Like pre-
viously, the evaluation was done using the precision, recall, and
binary accuracy metrics. Below are the results for the weapon classi-
fication model. Similar to the previous model, these metrics indicate
greater than 99% which means this model can be considered to be
highly accurate.

• Precision=1.0
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Figure 6: PythonCode for BatchDistribution for K-fold Cross
Validation

K-fold Iteration Precision Recall Binary Accuracy
1 1.0000 1.0000 1.0000
2 1.0000 1.0000 1.0000
3 0.9871 0.9871 0.9902
4 0.9934 0.9934 0.9976
5 0.9959 0.9959 0.9995

Table 1: Accuracy Results after K-fold Cross Validation

• Recall=1.0
• Binary Accuracy=1.0

These results appeared unconventional which resulted in con-
ducting a k-fold cross-validation to scrutinize the robustness and
reliability of the findings. Having a 100% result on these metrics is
unrealistic and may suggest the model is unable to perform well
in a real-world scenario. This may also suggest that the model had
overfitted to the training set. This may not be the case as the the
graphs in Figure 5 show the training and validation lines don’t de-
viate greatly which indicate the model has not overfitted. The same
dataset that was used previously was used to do the cross validation.
The dataset had a total of 177 batches with 32 images in each batch.
The split of data was the same as before, except the training and
validation datasets were used for the cross-validation. Using 5 as
k, the model was trained 5 times using the k-fold cross-validation
method and the resulting model was tested against the test dataset.
The reason for k equal to 5 is it results to each fold equaling 20% of
the data which ensures each fold is large enough to capture mean-
ingful patterns in the data. Having k equal to 5 is also a common
choice when doing this methodology. The fold equaled 32 batches
which resulted in the training, validation, and test datasets to have
128, 32, and 17 batches respectively. Figure 6 shows the Python
code used to split the batches into the training, validation, and test
datasets. The data variable represents the dataset as a whole. The
variables train_size, val_size, and test_size were calculated via the
ratio presented previously.

Table 1 shows the results of testing the model after each k-fold it-
eration. The results imply that the initial results may have occurred
by chance. It can still be said that this model is highly accurate as,

Section Average (s) Minimum (s) Maximum (s)
Scoreboard 1.291314 1.252528 24.384231
Top Bar 0.000566 0.000909 0.001002

Table 2: Execution Time Results

on average, the model achieved an accuracy greater than 98% on
each iteration.

The initial results may have been caused by what the model is
being used for. Valorant weapon icons don’t change or have any
variability which is the case for icons in general. The model may
have learned this and achieved a high accuracy because of this. As
the weapons icons in Valorant don’t change or are obscured in any
way, the fact the model has learned this way should not be a cause
for concern and may have a positive influence when the model is
predicting on real life scenarios.

Additional tests may be able to further verify the model. Perform-
ing K-fold Cross Validation with K equal to different sizes may show
patterns that could validate or invalidate the model further. Aug-
mentations to the test dataset could be done to test the robustness
of the model.

4.1.3 OCR Accuracy. Getting the accuracy of the OCR was done
by using it on 100 different images, specifically cells from the score-
board, to tailor the results towards the use case of this study. The
test itself did not use PaddleOCR by itself. The test would use Pad-
dleOCR along with the post-processing done to the initial output.
Each cell was assigned an expected value which was the value of
the cell and was compared to what the OCR outputted.

Results show that the accuracy of the OCR was 99%. This means
that the result of the text parsing process the tool uses deviates
very little actual values found on the scoreboard. The inaccuracy
came from a cell that had a "4" which resulted in the initial output
treating it as a "b". For future works, it would be possible to gain
better accuracy by adjusting the post-processing to recognize this
edge case.

4.2 Execution Time
This metric represents how fast the software can update the data
to the latest point. There are two sections of the screen that house
all the data that can be collected, the scoreboard and the area at
the top of the screen which will be called the top bar for this study.
Each section was timed separately, since these sections would be
executed independently of each other. This means that updates to
the scoreboard happen without needing to wait for the top bar to
finish its process. To measure the execution time, both processes
are run 100 times with the first time excluded to get the average
execution time without the cold start. Table 2 shows the average
execution time as well as the minimum and maximum execution
time for each section.

The difference between execution times may be related to how
different the two sections are. The scoreboard is very text heavy
and unlike the scoreboard, the Top Bar does not use any optical
character recognition as there are no text-based elements in that
section. The Top Bar is also static which means it only needs to use
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the agent image recognition once while the scoreboard needs to
keep using it as positions change very often throughout the game.

Comparing the results to previous real-time standards, the av-
erage execution time of one part is outside some standards. The
scoreboard average execution time is outside the range defined by
ATSC of 45±15ms [16] or the delay established by Jung et al. [14].
This, however, is within range of the paper discussing VisWiz [3].

5 CONCLUSION
The results show that the system as a whole can be considered to be
highly accurate and updates at near real-time speed. The accuracy
of the image classification models created and the OCR engine used
were above 95% and can be considered to be accurate. The time to
execute for the system as a whole has updates under the limits set
by ATSC. Individually, the scoreboard module was not able to meet
the execution time standards.

This computer vision based system was implemented by using
and improving previous projects. The base of this system was a
Python web-server which received and sent data that held data
from the game. To collect the real-time information from the game,
computer vision was used. A CNN was used to recognize different
characters and weapons from the game and OCRwas used to collect
textual data. The data came from the 2 sections, Top Bar and the
scoreboard, which updates the Python web-server independently
of each other. The created visuals come from the data sent by the
web-server.

There are a few points of improvement to consider. It was found
during the tests that while the system as a whole updates within the
standards set, the module handling the scoreboard fell behind. This
can be improved upon by updating themain store as soon as a row in
the scoreboard has been parsed. The way it was implemented in this
study was to batch process the entire scoreboard via pipelining and
then update the store once completed. The update function could
be done per row so that updates from the scoreboard happen faster.
It may also be possible to have each row be executed independently
of the others to update more often and the time between updates
would fall under the previously stated standards.
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