
Towards a Memory-Efficient Filipino Sign Language Recognition
Model for Low-Resource Devices

Shuan Noel Co
De La Salle University
Manila, Metro Manila
shuan_co@dlsu.edu.ph

Darius Ardales
De La Salle University
Manila, Metro Manila

darius_ardales@dlsu.edu.ph

Miguel Gonzales
De La Salle University
Manila, Metro Manila

miguel_gonzales@dlsu.edu.ph

Stephanie Joy Suzada
De La Salle University
Manila, Metro Manila

stephanie_susada@dlsu.edu.ph

Waynes Weyner Wu
De La Salle University
Manila, Metro Manila

waynes_wu@dlsu.edu.ph

Thomas James Tiam-Lee
De La Salle University
Manila, Metro Manila

thomas.tiam-lee@dlsu.edu.ph

Ann Franchesca Laguna
De La Salle University
Manila, Metro Manila

ann.laguna@dlsu.edu.ph

ABSTRACT
In this paper, we present a preliminary LSTM-based model for
recognizing Filipino sign language words in videos using hand
landmarks extracted from MediaPipe. Furthermore, we show that
post-quantization can significantly reduce its size without sacrific-
ing its performance, showing the potential for practical use. Despite
being trained on only a small number of instances per class, results
show that the model was able to achieve an accuracy of 93.29%,
while a 90% reduction in model size.

KEYWORDS
Filipino sign language, sign language recognition, tinyML

1 INTRODUCTION
Nowadays, the world is becoming more interconnected and inclu-
sive. Bridging the communication gap for all groups of people has
emerged as a pressing goal for researchers and practitioners alike.
In the Philippines, the deaf community represents a significant part
of society that faces challenges in communication, often leading
to discrimination and marginalization [7, 18, 19]. The Philippine
Statistics Authority (PSA) estimates that there are 1,784,690 indi-
viduals with hearing difficulty in 2020, comprising around 1.6%
of the population [14]. In 2018, the Philippine government signed
into law Republic Act No. 11106, also known as the “Filipino Sign
Language Act”, which designates Filipino Sign Language as the
national sign language of the Filipino deaf, mandating its use in
schools, workplaces, and broadcast media [2].

First, we develop a preliminary LSTM-based deep neural network
for recognizing a small subset of words that are specifically unique
to FSL. We show that training a model for this small subset is
possible with only a small size of training data. Second, we show
that quantization can be used to substantially reduce the size of the
model without sacrificing its performance.

This paper is structured as follows. Section 2 discusses the re-
lated literature. Section 3 discusses the methodology we used for
developing the sign language recognitionmodel. Section 4 discusses

the evaluation of the model and the results of the model. Finally,
Section 5 provides conclusions and directions for future work.

2 RELATEDWORKS
This section discusses the related literature of this study and situates
the position of this work in the existing body of knowledge.

2.1 Sign Language Recognition
There has been a wealth of studies done on sign language recog-
nition. For a period, hidden Markov models (HMM) and recurrent
neural networks (RNN) were the most common approaches to clas-
sify sign language [15]. However, with the recent developments in
machine learning, most deep learning approaches such as CNNs
and LSTMs have shown superior performance in this domain [16].
Despite its seemingly straightforward presentation, the problem of
sign language recognition is a complex task with many considera-
tions and challenges.

While most studies focus on the hand gestures only, there are
studies that focus on recognizing the body gestures [9] and facial
expressions [5, 17] as well. Another challenge in sign language
recognition is that some of these features may be occluded at certain
points in time [16]. One way to alleviate this is to perform feature
fusion, considering all the features in the prediction to make the
model more robust to such cases [8].

2.2 Filipino Sign Language Recognition
One major challenge is the small number of datasets available
for FSL. The largest dataset to our knowledge for FSL is the FSL-
105 dataset, which contains around 20 labelled instances for 105
introductory words and phrases [21]. While helpful, it does not
compare to the amount of data available for other sign languages.

In recent years, a few researchers have made attempts to incor-
porate various sign language recognition approaches to FSL. In the
works of [3, 4], a model for recognizing letters of the alphabet was
developed. In the former, it was successfully deployed in a Rasp-
berry Pi, achieving an accuracy of 93.29%. However, these works



PCSC2024, May 2024, Laguna, Philippines Co et al.

Figure 1: ML Pipeline

are limited to alphabet signs only, which are all static gestures that
do not incorporate movement. Similarly, the work of [12] trained
a CNN model for static images showing numbers. Other works
have applied various deep learning approaches to the task of FSL
recognition, such as LSTM [6, 13], ResNet [13], and gated recurrent
units [20], with good results on low label count manually collected
datasets.

3 METHODOLOGY
This section discusses the methodology we used in training the
sign language recognition model for FSL.

3.1 Dataset
In this study, we used data from the FSL-105 dataset. The FSL-105
dataset is a labelled dataset comprising 105 introductory words
and phrases in FSL [21]. Each instance in the dataset contains
the word or phrase, and a video of a person showing the sign
language movement corresponding to that word. In this study, we
only considered four words: “bread”, “egg”, “chicken”, and “crab”.
These words were chosen because they have unique signs in FSL
compared to other sign languages, and they are commonly used
words. Each word has a total of 20 instances.

3.2 Training Pipeline
Figure 1 shows the pipeline for the training process. The process
can be divided into three main phases. In the preprocessing phase,
the videos are converted as a sequence of frames (images), which
are then pre-processed using computer vision tools to extract key
features in preparation for training. In the training phase, an LSTM
deep neural network is trained from the input features. Finally, in
the optimization phase, a post-quantization method is applied to the
resultingmodel to reduce its size while maintaining its performance.

3.3 Preprocessing
In this phase, we perform preprocessing steps on the data in prepa-
ration for training. First, we extracted the instances belonging to the
four target classes from the FSL-105 dataset. Next, we preprocess
each video to extract the desired features for training.

Each video can be represented as a sequence of frames or images.
For each frame, we extract key landmarks showing the inferred
position and orientation of the hand on the frame. First, OpenCV

Figure 2: Before and After MediaPipe Processing

Table 1: List of Features Considered for the Model

was used to extract the image data from the individual frames of
the video, then the image data was fed to MediaPipe to extract the
landmarks. This preprocessing allows us to isolate the hands from
the other parts of the video to eliminate background noise. This
helps the model focus on the relevant information. For example,
factors such as the skin color of the person doing the gesture can
be ignored as they are not relevant to the task.

Our preprocessing and training process closely follows the frame-
work outlined by [10]. Figure 2 shows some examples of video
frames and the corresponding landmarks extracted byMediaPipe [11].
MediaPipe extracts 21 landmarks representing key joints in a per-
son’s hand. Each landmark is represented as a normalized point
in 3-D space with three numerical values corresponding to the
𝑥 , 𝑦, and 𝑧 components. From these raw landmarks, we compute
a feature vector by engineering a set of features that are more
meaningful for gesture representation. Specifically, we compute
the distances between a set of landmark pairs. Table 1 shows the
distances that were computed for each hand.

Each instance is represented as a sequence of frames, where each
frame is embedded as the feature vectors, we only considered the
frames where the hand has been detected by MediaPipe. We also
applied a skip frame operation to standardize all sequences to 10
frames.

3.4 Training
We posed the sign language recognition problem as a problem
of sequential gesture recognition. While there are certain words
and phrases that don’t require much movement or changes in the
gesture, there are also words and phrases that rely on the movement



FSL for Low-Resource Devices PCSC2024, May 2024, Laguna, Philippines

of the hand gesture over time. To accommodate this, we chose LSTM
as the model architecture for training the sign language recognition
model. The “sequence” pertains to the sequence of embeddings per
frame of a single sign language gesture instance.

LSTM (Long Short-Term Memory) neural networks excel in cap-
turing long-range dependencies within sequential data. Unlike sim-
ple neural networks that struggle with learning relationships over
extended sequences due to vanishing or exploding gradient prob-
lems, LSTMs are specifically designed to address this issue. The key
innovation lies in their gated architecture, allowing the network to
selectively remember or forget information over time. Each LSTM
unit possesses a memory cell that serves as a persistent storage,
and three gates (input, forget, and output) regulate the flow of in-
formation. The input gate controls which information to update,
the forget gate decides what to discard from the cell’s memory, and
the output gate determines the information to be passed to the next
layer. This intricate mechanism enables LSTMs to capture nuanced
temporal dependencies.

We split our dataset into a training and test set with an 80-20
split. This resulted to 64 instances for training and 16 instances for
testing. We then define the architecture of our model based on [10],
defined as follows. In order: (1) an LSTM layer with 256 neurons,
(2) a dropout layer, (3) another LSTM layer with 256 neurons, (4)
another dropout layer, (5) an LSTM layer with 128 neurons, (6) a
dense layer, (7) a batch normalization layer, (8) a RelU activation
function, and finally (9) an output layer with 4 output neurons and
softmax activation function. We used categorical cross entropy as
the loss function, a decaying learning rate starting from 0.001, and
ADAM as the optimizing algorithm. We trained the model for 300
epochs. Finally, we test the performance of the model by evaluating
its predictions of the test set. The model training was implemented
through TensorFlow. [1].

3.5 Optimization
After training, we used optimization techniques to reduce the mem-
ory requirements of the resulting model. The main technique we
used to optimize themodel was post-quantization. Post-quantization
is a technique that reduces the precision of numerical representa-
tions such as the weights and activations of the neurons from a
floating point to a lower-bit fixed-point of numbers, thereby com-
pressing the model and reducing its memory storage requirement
and computational complexity. We also converted the model from
TensorFlow to TensorFlow Lite, which streamlined the deployment
process for lower-end devices like mobile devices and resource
constrained environments.

4 RESULTS AND FINDINGS
This section discusses the performance of the resulting sign lan-
guage recognition model and compares it against alternative ap-
proaches.

4.1 Performance of the Model
Even prior to quantization, the LSTM model trained on the hand
landmarks achieved a 100% precision, recall, and accuracy on the
validation data. Figure 2 shows the confusion matrix of the predic-
tions, while Figure 3 shows the training and validation set accuracy

throughout the training process. The optimal accuracy was already
achieved in less than 50 epochs of training.

Table 2: Confusion Matrix for Model Performance

Actual\Pred Egg Chicken Crab Bread
Egg 3 0 0 0
Chicken 0 5 0 0
Crab 0 0 2 0
Bread 0 0 0 6

Figure 3: Train and Validation Accuracy in Model Training
Process

4.2 Effect of Post-Quantization
After performing post-quantization, we were able to reduce the
model size from 11.68MB to 1.01MB, corresponding to a 91.35%
reduction in size. Despite this substantial reduction, the model
maintained a high accuracy of 93.75%, with only one misclassifica-
tion in the validation set. Table 3 shows the confusion matrix of
the model after post-quantization. These results show the immense
potential of post-quantization in the context of FSL recognition.

Table 3: ConfusionMatrix for Model Performance After Post-
Quantization

Actual\Pred Egg Chicken Crab Bread
Egg 1 0 0 0
Chicken 0 4 0 1
Crab 0 0 8 0
Bread 0 0 0 2

When testing the model, significant improvements in usability
can be observed. For instance, prior to quantization themodel would
take a while to load when run on lower end systems. It would also



PCSC2024, May 2024, Laguna, Philippines Co et al.

suffer from delays when deployed as a real-time application. How-
ever, post-quantization significantly boosted performance speeds,
decreased loading times, and removed delays.

Nonetheless, there are still some problems when deploying the
model on microcontrollers like Raspberry Pi due to the bottleneck
of the MediaPipe processing. This causes performance issues when
used in a real-time setup. Nonetheless, the model can run efficiently
when used in an offline setting, or if the hand landmarks can be
pre-processed. These results show that there are still issues to be
resolved before the technology can be deployed in a real-world
setting.

4.3 Comparison with Alternative Approaches
To highlight the advantages of the approach discussed in this paper,
we compared the performance of the model against more straight-
forward approaches.

4.3.1 CNN without MediaPipe. The poor performance can of
course be attributed to the fact that motion information was not
being considered in this condition. CNN does not consider past
movements or gestures, it may have difficulties in differentiating
the classes, especially given the lack of data.

4.3.2 LSTM Without MediaPipe. We also attempted to train an
LSTMmodel but without using MediaPipe by feeding in the individ-
ual frames of the RGB video sequence. For this model, the accuracy
improved to 31.25%. Upon closer inspection of the confusion matrix
in Table 4, it becomes clear why this is the case – all the validation
instances were being predicted under “crab”.

Table 4: Confusion Matrix for LSTM Performance Without
MediaPipe

Actual\Pred Egg Chicken Crab Bread
Egg 0 0 5 0
Chicken 0 0 5 0
Crab 0 0 5 0
Bread 0 0 1 0

These results show that while LSTM can theoretically handle
image sequence data, the use of raw RGB frames as LSTM input
is not enough to successfully train an effective model with such a
small dataset. Furthermore, the resulting size of the LSTM model is
large at 1.73GB. These results highlight the advantage of adding a
pre-processsing step to detect hand landmarks, as it significantly
reduces the input size of the model, allowing for faster learning
and smaller model size.

4.4 Summary of Results
Table 5 shows the summary of the results. From here, we can see
that the introduced model for sign language recognition achieved
good results on FSL by capturing hand movements as well as lim-
iting the feature space to only the hand landmarks. Furthermore,
post-quantization was able to significantly reduce the model size,
showing potential for it to be deployed on low-resource devices.

Table 5: Summary of Results

Model Input Quantization Accuracy Model Size
CNN Raw single

video frame
no 25.49% 42MB

LSTM Raw video
sequence of
frames

no 31.25% 1.73GB

LSTM MediaPipe
hand
landmarks
on sequence
of frames

no 100% 11.68MB

LSTM MediaPipe
hand
landmarks
on sequence
of frames

yes 93.75% 1.01MB

5 CONCLUSION AND FUTUREWORK
There is still a lot of future work in the field of FSL recognition.
First, the models can be scaled up to handle a wider set of vocab-
ulary. In this aspect, it would be interesting to explore whether
current models would struggle with a larger set of classes, some of
which may have similarities with one another. In this regard, one
consideration is the development of techniques that do not require
large amounts of data, as FSL datasets are currently limited. Second,
the facial expressions and body gestures can be incorporated into
the models, handling challenges such as occlusions to improve per-
formance. Third, we can explore optimization techniques such as
post-quantization for the development of real-time FSL recognition
systems that can work on smartphones or similar devices so that
they could be democratized to the Philippine deaf community. We
believe these results can serve as a foundation for more FSL research
and pave the way for the development of larger-scale recognition
systems for the language.

REFERENCES
[1] [n. d.]. TensorFlow. https://www.tensorflow.org
[2] 2018. Republic Act No. 11106. https://www.officialgazette.gov.ph/2018/10/30/

republic-act-no-11106/
[3] Mark Christian Ang, Karl Richmond C Taguibao, and Cyrel O Manlises. 2022.

Hand Gesture Recognition for Filipino Sign Language Under Different Back-
grounds. In 2022 IEEE International Conference on Artificial Intelligence in Engi-
neering and Technology (IICAIET). IEEE, 1–6.

[4] Mark Allen Cabutaje, Kenneth Ang Brondial, Alyssa Franchesca Obillo, Mideth
Abisado, Shekinah Lor Huyo-a, and Gabriel Avelino Sampedro. 2023. Ano Raw:
A Deep Learning Based Approach to Transliterating the Filipino Sign Language.
In 2023 International Conference on Electronics, Information, and Communication
(ICEIC). IEEE, 1–6.

[5] Siddhartha Pratim Das, Anjan Kumar Talukdar, and Kandarpa Kumar Sarma.
2015. Sign language recognition using facial expression. Procedia Computer
Science 58 (2015), 210–216.

[6] Carmela Louise L Evangelista, Criss Jericho R Geli, Marc Marion V Castillo,
and Carol Biklin G Macabagdal. 2023. Long Short-Term Memory-based Static
and Dynamic Filipino Sign Language Recognition. In 2023 IEEE International
Conference on Automatic Control and Intelligent Systems (I2CACIS). IEEE, 235–240.

[7] Jasmine DC Hidalgo, Kayla Joy R Pantanilla, Almira E Castro, and Mickaela R
Alfon. 2023. Employability of Persons With Disabilities. International Journal of
Academic Management Science Research 7, 4 (2023), 29–36.

[8] Muhammed Kocabas, Salih Karagoz, and Emre Akbas. 2018. Multiposenet: Fast
multi-person pose estimation using pose residual network. In Proceedings of the
European conference on computer vision (ECCV). 417–433.

https://www.tensorflow.org
https://www.officialgazette.gov.ph/2018/10/30/republic-act-no-11106/
https://www.officialgazette.gov.ph/2018/10/30/republic-act-no-11106/


FSL for Low-Resource Devices PCSC2024, May 2024, Laguna, Philippines

[9] Dimitrios Konstantinidis, KosmasDimitropoulos, and Petros Daras. 2018. Sign lan-
guage recognition based on hand and body skeletal data. In 2018-3DTV-conference:
The true vision-capture, transmission and display of 3D video (3DTV-Con). IEEE,
1–4.

[10] Wee Kiat Lim. 2021. Hand Gesture Detection and Se-
quence Recognition. https://weekiat-lim.medium.com/
hand-gesture-detection-sequence-recognition-7f3215f88dde.

[11] Camillo Lugaresi, Jiuqiang Tang, Hadon Nash, Chris McClanahan, Esha Uboweja,
Michael Hays, Fan Zhang, Chuo-Ling Chang, Ming Yong, Juhyun Lee, et al. 2019.
Mediapipe: A framework for perceiving and processing reality. In Third workshop
on computer vision for AR/VR at IEEE computer vision and pattern recognition
(CVPR), Vol. 2019.

[12] Myron Darrel Montefalcon, Jay Rhald Padilla, and Ramon Llabanes Rodriguez.
2021. Filipino sign language recognition using deep learning. In 2021 5th Interna-
tional Conference on E-Society, E-Education and E-Technology. 219–225.

[13] Myron Darrel Montefalcon, Jay Rhald Padilla, and Ramon Rodriguez. 2022. Fil-
ipino sign language recognition using long short-term memory and residual
network architecture. In Proceedings of Seventh International Congress on Infor-
mation and Communication Technology: ICICT 2022, London, Volume 4. Springer,
489–497.

[14] Liberty Notarte-Balanquit. 2023. Filipino Sign Language: Filipino Sign Language
Numerals and the Expansion of Deaf Linguistic Repertoire (online lecture). https:
//www.youtube.com/watch?v=4vBEN00ecGw

[15] Sylvie CWOng and Surendra Ranganath. 2005. Automatic sign language analysis:
A survey and the future beyond lexical meaning. IEEE Transactions on Pattern
Analysis & Machine Intelligence 27, 06 (2005), 873–891.

[16] Razieh Rastgoo, Kourosh Kiani, and Sergio Escalera. 2021. Sign language recog-
nition: A deep survey. Expert Systems with Applications 164 (2021), 113794.

[17] Joanna Pauline Rivera and Clement Ong. 2018. Facial expression recognition in
filipino sign language: Classification using 3D Animation units. In Proc. the 18th
Philippine Computing Science Congress (PCSC 2018). 1–8.

[18] Freya Silva-Dela Cruz and Estrella Calimpusan. 2018. Status and challenges of the
deaf in one city in the philippines: towards the development of support systems
and socio-economic opportunities. Asia Pacific Journal of Multidisciplinary
Research 6, 2 (2018), 33–47.

[19] Marcella L Sintos. 2020. Psychological Distress of Filipino Deaf: Role of Environ-
mental Vulnerabilities, Self-Efficacy, and Perceived Functional Social Support.
Asia-Pacific Social Science Review 20, 3 (2020).

[20] Isaiah Tupal, Melvin Cabatuan, and Michael Manguerra. 2022. Recognizing
Filipino Sign Language with InceptionV3, LSTM, and GRU. In 2022 IEEE 14th
International Conference on Humanoid, Nanotechnology, Information Technology,
Communication and Control, Environment, and Management (HNICEM). IEEE,
1–5.

[21] Isaiah Jassen Lizaso Tupal and Cabatuan K Melvin. [n. d.]. FSL105: The Video
Filipino Sign Language Sign Database of Introductory 105 FSL Signs. Available
at SSRN 4476867 ([n. d.]).

https://weekiat-lim.medium.com/hand-gesture-detection-sequence-recognition-7f3215f88dde
https://weekiat-lim.medium.com/hand-gesture-detection-sequence-recognition-7f3215f88dde
https://www.youtube.com/watch?v=4vBEN00ecGw
https://www.youtube.com/watch?v=4vBEN00ecGw

	Abstract
	1 Introduction
	2 Related Works
	2.1 Sign Language Recognition
	2.2 Filipino Sign Language Recognition

	3 Methodology
	3.1 Dataset
	3.2 Training Pipeline
	3.3 Preprocessing
	3.4 Training
	3.5 Optimization

	4 Results and Findings
	4.1 Performance of the Model
	4.2 Effect of Post-Quantization
	4.3 Comparison with Alternative Approaches
	4.4 Summary of Results

	5 Conclusion and Future Work
	References

