
FrameRL: DNA-Protein Sequence Alignment using Deep
Reinforcement Learning

Wai Kei Li
College of Computer Studies

De La Salle University
Manila, Philippines

wai_kei_li@dlsu.edu.ph

Justin Ayuyao
College of Computer Studies

De La Salle University
Manila, Philippines

justin_ayuyao@dlsu.edu.ph

John Carlo Joyo
College of Computer Studies

De La Salle University
Manila, Philippines

john_carlo_joyo@dlsu.edu.ph

Renz Ezekiel Cruz
College of Computer Studies

De La Salle University
Manila, Philippines

renz_cruz@dlsu.edu.ph

Roger Luis Uy
College of Computer Studies

De La Salle University
Manila, Philippines

roger.uy@dlsu.edu.ph

ABSTRACT
Aligning DNA and protein sequences in three reading frames, re-
ferred to as Three-Frame Alignment, is a dynamic programming
(DP) approach for the alignment between a reference protein se-
quence and an input DNA sequence. Despite finding optimal align-
ments with the usage of three matrices, the memory usage of Three-
Frame Alignment scales with the lengths of the sequences, making
longer reads costly. This paper proposes FrameRL, a deep reinforce-
ment learning approach with an environment based on Zhang’s
Three-Frame alignment algorithm and agent that can perform DNA-
Protein sequence alignment. The resulting approach showed better
scalability in memory usage for longer reads, resulting in an overall
space complexity of O(1) compared with O(MN) of dynamic pro-
gramming approaches, with M and N as the lengths of the DNA
and protein sequences, respectively.

KEYWORDS
Three-frame alignment, global alignment, deep reinforcement learn-
ing, deep Q-learning, agent, environment, dueling double deep
Q-networks

1 INTRODUCTION
Sequence alignment is the process of aligning nucleotide or amino
acid sequences to identify common regions in order to find com-
monalities in ancestry, structure, function, and others [1]. Directly
translating the DNA and finding the optimal alignments among all
other possible amino acid counterparts is computationally heavy;
therefore, dynamic programming approaches like the Needleman-
Wunsch [5] and Smith-Waterman [8] algorithms were often utilized.
Despite finding an optimal alignment, dynamic programming ap-
proaches are limited by their space complexity, which is directly
proportional to the product of the lengths of each of the sequences.
Therefore, these approaches are preferred for shorter sequence
reads, as handling and recording large matrices is computationally
costly.

Works like the DQNalign [9] and EdgeAlign [3] have already im-
plemented reinforcement learning into sequence alignment, specif-
ically, DNA-to-DNA. DQNalign was the first among the two and

proved the viability of using deep reinforcement learning for DNA-
to-DNA sequence alignment. It involves converting the sequence
alignment task into a sliding windows environment with one win-
dow per sequence. Each window has a size of N representing a
subsequence of size N. Their agent will then perform alignment on
these windows and move them until each of them reaches the end
of their respective sequences.

Zhang’s Three-Frame algorithm uses three reading frames and
three matrices (I, D, and C), effectively detecting and adjusting for
frameshifts. The dynamic programming approach utilizes several
recurrence relations to find the best score possible from the three
matrices. The I matrix looks into the max score given an insertion.
The C matrix takes charge of looking for the score of the best scores
overall, and the D matrix is for deletion.

Like DQNalign, this paper proposed a deep reinforcement learn-
ing approach to DNA and protein sequence alignment to solve the
space complexity issues associated with Zhang’s three-frame align-
ment. The proposed method leverages the benefits of reinforcement
learning while still attempting to recreate the approach used in
Zhang’s three-frame alignment. The proposed method was able
to distinguish perfect matches and several frameshift errors but
still experiences instability for mismatches or substitutions. It was
also found to have better memory scalability when more extensive
sequences are involved.

Section 2 of this paper discusses the training procedure, the
agent and environment, the network architecture, and some exper-
imentations performed. Space complexity, query tests, and agent
training progression are discussed in Section 3. Lastly, conclusions
and future work are presented in Section 4.

2 DNA TO PROTEIN ALIGNMENTWITH
REINFORCEMENT LEARNING

Zhang’s Three-Frame approach [12] is a global alignment dynamic
programming solution providing the optimal alignment between
the DNA and protein sequences. However, the issue with the ap-
proach stems from the part where it handles three matrices and its
constant traversal for the simple act of attempting to gather the
score. The space complexity of such an ordeal is also in O(MN)
space, with M being the length of the DNA and N being the length



PCSC2024, May 2024, Laguna, Philippines Li et al.

of the protein. This makes it difficult to scale when the inputs get
into millions in length.

The traversal of the three matrices creates a potential pitfall
regarding time and space complexity in long reads. The usage of
the Deep Reinforcement Learning method, or DRL, aims to solve
the problem of scalability due to the neural networks having a time
complexity of O(N), where N is the length of the query sequence.
The speedup will not be immediately realized due to the huge over-
head that the neural network demands. However, it performs better
for the space complexity aspect as the total space complexity of the
neural network would be O(1) [3]. The overall space complexity
would still be O(M+N) due to loading in the reference nucleotide
and input proteome, with M as the DNA length and N as the protein
sequence length. Still, it is not comparable to Zhang’s Three-Frame,
wherein the space complexity is still O(MN) multiplied by three
due to the I, C, and D matrices.

2.1 Training Procedure
To successfully train an unbiased RL agent, diverse input data sets
are necessary to avoid biases associated with limited or overly
specific datasets.

The process was initiated by generating a DNA sequence of
length 1000. This training length was chosen to expose the agent
to as many nucleotides and codons as possible without hindering
training time. The first sequence is generated by randomly selecting
nucleotides (A, G, C, or T). Then, the mutations were introduced
using the JC69 model [2] to the first sequence to create the second
sequence. On top of that, insertions and deletions are introduced
in both sequences, so the RL agent is exposed to a wide variety
of sequences through the Zipfian distribution-based indel length
model [7]. Finally, the second DNA sequence is translated into a
protein sequence. This is repeated until five sets of DNA and protein
pairs are generated.

In addition, random protein sequences were generated for each
DNA sequence so that the agent is trained in scenarios wherein the
sequences are highly mismatched and where insertions, deletions,
and frameshifts occur more frequently. Five training sets were gen-
erated to train the agent, each containing one DNA sequence, one
directly matched protein sequence, and one randomly generated
protein sequence. For convenience and easier tallying and track-
ing of incorrect actions, the agent’s reward system punishes the
agent’s reward score by -2 when it makes mistakes and rewards it
with 0 for every correct action. This reward system has made the
agent prioritize looking for and frameshift matches. However, it
becomes unstable regarding in/del actions and mismatches. These
instabilities also shift the reading frames, which primarily affects
the accuracy of the alignment and influences succeeding actions.

2.2 Agent and Environment
The environment mainly consists of the reference proteome of
size M and the target DNA sequence of size N, wherein the agent
traverses both using respective pointers. The environment is con-
sidered a Sequential Partially Observable Markov’s Decision Pro-
cess [10], where it only allows the agent to see a part of the envi-
ronment because the agent’s action will affect the current reading

frames. The environment can also be considered deterministic de-
spite having multiple correct actions, and this is due to those actions
being sub-optimal.

The main objective of the environment is to recreate the process
of Three-Frame Alignment. The environment is deterministic, with
many states due to the twenty-one proteins in the codon table and
eight of them in a subset comprising the past and current three
reading frames alongside their respective proteome. Effectively,
54 billion states (including the stop codon/protein) are possible.
Thus, a brute-force approach for both methods is impractical and
unfeasible.

Conversely, the agent is a separate entity that interacts with the
environment using distinct actions: MATCH (M), FRAMESHIFT_1
(F1), FRAMESHIFT_3 (F3), INDEL, and MISMATCH. The actions
F1, M, and F3 pertain to aligning the current protein with the cur-
rent reading frames 1, 2, and 3, respectively. INDELs, on the other
hand, are alignments between the previous protein and any of the
current frames or current protein with any previous frames. Lastly,
MISMATCH happens when all other actions are not possible; thus,
only the substitution of frames is possible. The precedence of these
actions is based on the understanding from the simplification of
the recurrence relation of Zhang’s Three-Frame alignment.

M actions are always preferred, followed by F1 and F3 actions,
and then by INDELs before resorting to MISMATCH. This prece-
dence came from calculating the scores in the recurrence relation
wherein Matches are favored over Frameshift matches, which are
then favored over Indel matches, and which are also favored over
Mismatches or Substitution. Depending on the result, these actions
move the DNA and protein pointers rightward. The agent is pun-
ished if the action it chooses is incorrect, but there are no rewards
if the agent is correct.

For the learning stage, the agent employs epsilon-greedy explo-
ration [10], wherein it does random actions when there are higher
epsilon values to experience as many states, actions, and rewards
as possible and possibly determine and find patterns. These actions
eventually update the agent’s network, and the epsilon value is
decayed over time as the agent’s network is further trained.

2.3 Network Architecture
The agent in this paper adopts a Dueling Double Deep Q-Network
(DDDQN) architecture similar to the approach used in DQNalign [9]
for determining its actions. By leveraging the DDDQN architecture,
the agent can expedite its decision-making process and create better
learning outcomes. This architecture is particularly beneficial in
distinguishing states that have more significance in learning.

The choice of utilizing a convolutional neural network (CNN)
in the agent’s network architecture is influenced by previous re-
searchers who employed it in their deep reinforcement learning
tasks, specifically in DQNalign and EdgeAlign [3]. Notably, the in-
ception of CNNs in DRL can be traced back to Google DeepMind’s
research [4], which used the Atari games as their environment.

In the subsequent layers of the network, the Dueling architec-
ture was incorporated to effectively segregate the State-action and
Action-advantage values, thereby facilitating a more accurate esti-
mation of future Q values by the network.



FrameRL: DNA-Protein Sequence Alignment using Deep Reinforcement Learning PCSC2024, May 2024, Laguna, Philippines

2.4 Experimentation
2.4.1 Query Experiments. The capacity of the agent to per-

form alignment was tested on select proteomes from the organism
Drosophila melanogaster [11] (Fruit Fly). For the experiment, ten
proteomes were selected from the list of Fruit Fly proteomes with
a given length of 333. After that, the selected proteins are directly
translated into their respective DNA sequences. These DNA se-
quences will be aligned with several reference proteomes from the
previously selected proteomes. A random protein is first selected
to simulate a query, and a target substring of length M is also shat-
tered from that protein. After that, the random protein’s ID and
the translated DNA are recorded. The protein ID will serve as a
reference in identifying the parent or origin of the target substring.
Afterward, the order of the ten random proteins is shuffled, and the
translated DNA is aligned with each protein. By assumption, the
protein with the highest alignment score should contain the target
substring. This random selection of protein and target substring is
tested for each of the ten selected proteins.

2.4.2 Memory Usage Experiments. A synthetic benchmark is
performed by generating a DNA sequence of a desired length to
serve as the reference. To generate the query, the reference is shat-
tered with mutations incorporated into the sequence based on the
JC69 model [2] before being converted to a protein sequence. The
RL Agent and a sequential implementation in Python of Zhang’s
Three-Frame algorithm are then given these sequences to simulate
alignment with varying read lengths. The benchmark is performed
by aligning on base pair lengths of 10, 30, 60, 100, 300, 500, 800,
1000, 1500, 3000, 4500, 6000, 7500, 9000, 13500, and 15000. For each
given base pair length, memory is sampled for every alignment step,
which is then averaged to give a comparative memory usage given
a base pair length. These results were then compiled, and a graph
was generated to visualize the space complexity of the aligners.

3 RESULTS AND DISCUSSION
3.1 Agent Training

Figure 1: Agent Reward Progression

The training results in Figure 1 show that within the allotted
1000 episodes, the agent could learn the pattern of detecting perfect

matches, frameshift_1 matches, and frameshift_3 matches. The
first few hundred training episodes include substantial inaccuracy
caused by the epsilon-greedy exploration training approach that
makes random actions. Eventually, this epsilon value fully decays at
episodes 400 to 500. Still, it retains a 1% chance of making a random
action to facilitate the exploration even after epsilon has been fully
decayed. The random actions prevent our agent from remaining in
a local minima while training.

However, in relation to accuracy, even minor random errors in
the agent’s predictions will cause the reading frames to be shifted.
So, in the long term, minor errors like these may cause a massive
difference in the overall score but will not affect the result if the
given sequences perfectly match.

Figure 2: An example of the Alignment History

Since the primary approach attempts to mimic the original Three-
Frame alignment and account for insertions and deletions, the
agent’s environment will be given six reading frames: three past
frames and three present frames, as well as two proteins: one past
protein (PP), and one current protein (CP) as displayed in Figure 2
and with the given information, the agent will predict the correct
action to be done.

3.2 Memory Usage and Query Tests

Figure 3: Memory Utilization of the Aligners



PCSC2024, May 2024, Laguna, Philippines Li et al.

3.2.1 Memory Usage Comparison. Figure 3 presents a compara-
tive analysis of the memory usage for the two different approaches
in aligning: dynamic programming and reinforcement learning.
The comparison was performed across various base pair lengths,
emphasizing how each approach scales in terms of memory require-
ments.

As shown in Figure 3 and Table S2, the agent has a space complex-
ity of O(1) since it only has to load the weights of the Q-network.
Memory usage remained constant since the agent was able to take
advantage of Python’s buffered reader [6]. Zhang’s three-frame
aligner also takes advantage of the buffered reader, but despite that,
the dynamic programming approach has to maintain three matrices,
namely the I, D, and C matrix. This results in a space complexity
of O(MN) where M is the length of the protein sequence and N
is the length of the DNA sequence. For lengths beyond 150 base
pairs, typical of long reads, the memory utilization of the dynamic
programming approach quickly grows, making it unsuitable for
alignment in long reads. Therefore, the agent outperformed the
dynamic programming approach regarding memory usage since its
space complexity remains constant for long reads. This makes the
approach suitable for alignment tasks in devices with a constraint
on memory footprint since the agent can perform alignment with
a predictable memory utilization pattern.

3.2.2 AgentQuery Tests. Table S1 displays the alignment scores
for all query tests performed. The target protein represents the
shattered sequence or substring of a source protein that the query
will try to align with other proteins. The source proteins are also
identified via their respective protein IDs. The respective columns
represent alignment scores between the translated DNA sequence
of the source protein and other proteins in the list. For example,
in Row 1, the target protein is FVRIKQSLKP, originating from the
protein Q7K1S. When aligning the translated DNA of Q7K1S with
another protein whose ID is Q9V3Y7, the resulting alignment score
is 79. From the table, it can be seen that the highest alignment scores
are from the same protein IDs for each target protein. This further
supports the assumption that the protein with the highest align-
ment score should contain the target substring. This indicates that
the agent could fully identify matches between DNA and Protein
sequences.

4 FUTUREWORKS
For future works, it is important to note that there are still mi-
nor instabilities when the agent encounters situations involving
insertion, deletion, and substitution/mismatch. At the same time,
further investigation and optimization are required for the incor-
rect truncation and lack of padding for the last reading frames in
the environment. This is because the agent stops performing the
alignment when no more current three reading frames are in the
DNA sequence. Furthermore, the network architecture and layers
could be further tested and optimized, for example, by changing the
total number of layers, reconfiguring and replacing convolutional
layers, etc.

The reinforcement learning model introduced in this paper is in
its initial implementation. As such, it requires further refinement
before it could be compared with alignment tools such as BLAST
or algorithms like seed-chain-extend. Further refinements would

include the optimization of the policy gradients and increasing the
model’s window size which will allow more reading frames to be
evaluated during alignment.

In exploring potential RL models suitable for the deterministic
environment of the paper, other models that offer performance
enhancements can be considered. One promising model is the Deep
Deterministic Gradient Policy (DDGP), which warrants further
investigation due to its functionality in environments with contin-
uous action spaces. Given the limitations of Q-learning in utilizing
policy gradients effectively, alternatives that optimize through pol-
icy gradients could potentially yield a better agent. Additionally,
the concept of imitation learning, where another model mimics and
potentially outperforms the baseline model by learning from its
actions in specific states, presents an interesting avenue for further
exploration.

REFERENCES
[1] Stephen F Altschul and Mihai Pop. 2017. Sequence alignment. (2017).
[2] Thomas H Jukes, Charles R Cantor, et al. 1969. Evolution of protein molecules.

Mammalian protein metabolism 3, 24 (1969), 21–132.
[3] Aryan Lall and Siddharth Tallur. 2023. Deep reinforcement learning-based pair-

wise DNA sequence alignment method compatible with embedded edge devices.
Scientific Reports 13, 1 (2023), 2773.

[4] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602 (2013).

[5] Saul B Needleman and Christian D Wunsch. 1970. A general method applicable
to the search for similarities in the amino acid sequence of two proteins. Journal
of molecular biology 48, 3 (1970), 443–453.

[6] Python. 2024. Built in Functions. https://docs.python.org/3/library/functions.
html

[7] Bin Qian and Richard A Goldstein. 2001. Distribution of indel lengths. Proteins:
Structure, Function, and Bioinformatics 45, 1 (2001), 102–104.

[8] Temple F Smith, Michael S Waterman, et al. 1981. Identification of common
molecular subsequences. Journal of molecular biology 147, 1 (1981), 195–197.

[9] Yong-Joon Song, Dong Jin Ji, Hyein Seo, Gyu Bum Han, and Dong-Ho Cho. 2021.
Pairwise heuristic sequence alignment algorithm based on deep reinforcement
learning. IEEE open journal of engineering in medicine and biology 2 (2021), 36–43.

[10] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

[11] UniProt. [n. d.]. Drosophila melanogaster (Fruit fly). https://www.uniprot.org/
proteomes/UP000000803

[12] Zheng Zhang, William R Pearson, and Webb Miller. 1997. Aligning a DNA
sequence with a protein sequence. In Proceedings of the first annual international
conference on Computational molecular biology. 337–343.

https://docs.python.org/3/library/functions.html
https://docs.python.org/3/library/functions.html
https://www.uniprot.org/proteomes/UP000000803
https://www.uniprot.org/proteomes/UP000000803


FrameRL: DNA-Protein Sequence Alignment using Deep Reinforcement Learning PCSC2024, May 2024, Laguna, Philippines

5 SUPPLEMENTARY MATERIALS

Supplementary Table 1: Alignment Score per Query Test

Supplementary Table 2: Agent Reward Score per Query Test

Supplementary Table 3: Memory Usage Per Base Pair Counts


	Abstract
	1 Introduction
	2 DNA TO PROTEIN ALIGNMENT WITH REINFORCEMENT LEARNING
	2.1 Training Procedure
	2.2 Agent and Environment
	2.3 Network Architecture
	2.4 Experimentation

	3 RESULTS AND DISCUSSION
	3.1 Agent Training
	3.2 Memory Usage and Query Tests

	4 FUTURE WORKS
	References
	5 Supplementary Materials

